
Dayong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11717873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The promise of organ and tissue preservation to transform medicine. Nature Biotechnology, 2017, 35, 530-542.	9.4	371
2	Cryopreservation. Organogenesis, 2009, 5, 90-96.	0.4	180
3	Fundamental Cryobiology of Mammalian Spermatozoa. , 1997, , 263-328.		87
4	Dose Determinants in Continuous Renal Replacement Therapy. Artificial Organs, 2003, 27, 815-820.	1.0	79
5	Optimizing Viable Leukocyte Sampling from the Female Genital Tract for Clinical Trials: An International Multi-Site Study. PLoS ONE, 2014, 9, e85675.	1.1	73
6	Low-Molecular Weight Proteins in End-Stage Renal Disease. Journal of the American Society of Nephrology: JASN, 2002, 13, S41-S47.	3.0	73
7	The viability of fatty tissues within adipose aspirates after conventional liposuction: a comprehensive study. Annals of Plastic Surgery, 2005, 54, 288-92; discussion 292.	0.5	66
8	Novel Microwave Technology for Cryopreservation of Biomaterials by Suppression of Apparent Ice Formation. Cryobiology, 1997, 34, 363-372.	0.3	51
9	Universal model for intracellular ice formation and its growth. AICHE Journal, 2006, 52, 2596-2606.	1.8	43
10	Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation. Biosensors and Bioelectronics, 2016, 77, 164-173.	5.3	42
11	Adipose Aspirates as a Source for Human Processed Lipoaspirate Cells after Optimal Cryopreservation. Plastic and Reconstructive Surgery, 2006, 117, 1845-1850.	0.7	39
12	A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology, 2016, 72, 93-99.	0.3	37
13	Update on Cryopreservation of Adipose Tissue and Adipose-derived Stem Cells. Clinics in Plastic Surgery, 2015, 42, 209-218.	0.7	33
14	Determination of the temperature-dependent cell membrane permeabilities using microfluidics with integrated flow and temperature control. Lab on A Chip, 2017, 17, 951-960.	3.1	32
15	Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues. Cryobiology, 2014, 68, 234-243.	0.3	30
16	Topical and Targeted Delivery of siRNAs to Melanoma Cells Using a Fusion Peptide Carrier. Scientific Reports, 2016, 6, 29159.	1.6	29
17	Sensing and Sensibility: Singleâ€Isletâ€based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules. Advanced Healthcare Materials, 2016, 5, 223-231.	3.9	25
18	Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials. Cryobiology, 2006, 53, 288-293.	0.3	24

Dayong Gao

#	Article	IF	CITATIONS
19	On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS Applied Materials & Interfaces, 2021, 13, 32640-32652.	4.0	24
20	Fine-tuned dehydration by trehalose enables the cryopreservation of RBCs with unusually low concentrations of glycerol. Journal of Materials Chemistry B, 2021, 9, 295-306.	2.9	23
21	Polyacrylic acid coated carbon nanotube–paper composites for humidity and moisture sensing. Journal of Materials Chemistry C, 2019, 7, 5374-5380.	2.7	22
22	Threeâ€Ðimensional Simulation of Mass Transfer in Artificial Kidneys. Artificial Organs, 2015, 39, E79-89.	1.0	21
23	Investigation of Electromagnetic Resonance Rewarming Enhanced by Magnetic Nanoparticles for Cryopreservation. Langmuir, 2019, 35, 7560-7570.	1.6	17
24	Cryopreservation and Microsurgical Implantation of Rabbit Carotid Arteries. Cell Preservation Technology, 2002, 1, 121-128.	0.8	15
25	Cryopreservation of human mucosal tissues. PLoS ONE, 2018, 13, e0200653.	1.1	14
26	Cell Blebbing upon Addition of Cryoprotectants: A Self-Protection Mechanism. PLoS ONE, 2015, 10, e0125746.	1.1	14
27	Cryopreservation of Human Mucosal Leukocytes. PLoS ONE, 2016, 11, e0156293.	1.1	14
28	Combined electromagnetic and heat-conduction analysis of rapid rewarming of cryopreserved tissues. IEEE Transactions on Microwave Theory and Techniques, 2000, 48, 2185-2190.	2.9	13
29	Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T). Cryobiology, 2014, 68, 294-302.	0.3	13
30	Determination of the Membrane Permeability to Water of Human Vaginal Mucosal Immune Cells at Subzero Temperatures Using Differential Scanning Calorimetry. Biopreservation and Biobanking, 2016, 14, 307-313.	0.5	12
31	Electric field-induced concentration and capture of DNA onto microtips. Microfluidics and Nanofluidics, 2012, 13, 217-225.	1.0	11
32	High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor. Scientific Reports, 2015, 5, 10377.	1.6	10
33	Deglycerolization of red blood cells: A new dilution-filtration system. Cryobiology, 2018, 81, 160-167.	0.3	10
34	On-chip label-free determination of cell survival rate. Biosensors and Bioelectronics, 2020, 148, 111820.	5.3	10
35	Convective renal replacement therapies for acute renal failure and end-stage renal disease. Hemodialysis International, 2004, 8, 386-393.	0.4	9
36	Microvasculature-directed thrombopoiesis in a 3D in vitro marrow microenvironment. PLoS ONE, 2018, 13, e0195082.	1.1	9

DAYONG GAO

#	Article	IF	CITATIONS
37	Semi-Automated, Occupationally Safe Immunofluorescence Microtip Sensor for Rapid Detection of Mycobacterium Cells in Sputum. PLoS ONE, 2014, 9, e86018.	1.1	8
38	Unloading of cryoprotectants from cryoprotectant-loaded cells on a microfluidic platform. Biomedical Microdevices, 2017, 19, 15.	1.4	8
39	Fatigue damage to pig erythrocytes during repeated swelling and shrinkage. Cryobiology, 2015, 71, 210-215.	0.3	7
40	Determination of Dielectric Properties of Cryoprotective Agent Solutions with a Resonant Cavity for the Electromagnetic Rewarming in Cryopreservation. Biopreservation and Biobanking, 2017, 15, 404-409.	0.5	7
41	A Modified Differential Scanning Calorimetry Method for Determining Water Transport Properties in Biological Cells During the Freezing Process. Cell Preservation Technology, 2007, 5, 25-32.	0.8	6
42	A multistage-dialysis microdevice for extraction of cryoprotectants. Biomedical Microdevices, 2017, 19, 30.	1.4	6
43	Fracture-Induced Mechanoelectrical Sensitivities of Paper-Based Nanocomposites. Advanced Materials Technologies, 2018, 3, 1700266.	3.0	6
44	Effect of iron oxide nanoparticles on the permeability properties of Sf21Âcells. Cryobiology, 2016, 72, 21-26.	0.3	5
45	Effect of Warming Process on the Survival of Cryopreserved Human Peripheral Blood Mononuclear Cells. Biopreservation and Biobanking, 2021, 19, 318-323.	0.5	5
46	A single-cell identification and capture chip for automatically and rapidly determining hydraulic permeability of cells. Analytical and Bioanalytical Chemistry, 2020, 412, 4537-4548.	1.9	5
47	Simultaneous multiparameter whole blood hemostasis assessment using a carbon nanotube-paper composite capacitance sensor. Biosensors and Bioelectronics, 2022, 197, 113786.	5.3	5
48	Rapid and continuous on-chip loading of trehalose into erythrocytes. Biomedical Microdevices, 2019, 21, 5.	1.4	3
49	Dialysate Regeneration with Urea Selective Membrane Coupled to Photoelectrochemical Oxidation System. Advanced Materials Interfaces, 0, , 2102308.	1.9	3
50	Simulation of blood and oxygen distributions in a hepatic lobule with sinusoids obstructed by cancer cells. Journal of Theoretical Biology, 2018, 446, 229-237.	0.8	2
51	On-Chip Sonoporation-Based Flow Cytometric Magnetic Labeling. ACS Biomaterials Science and Engineering, 2020, 6, 3187-3196.	2.6	2
52	Solute and Water Kinetics in Continuous Therapies. , 2009, , 1377-1384.		2
53	Effect of the Polydispersity of RBCs on the Recovery Rate of RBCs during the Removal of CPAs. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-11.	0.7	1

54 Predilution and Postdilution Reinfusion Techniques. , 2009, , 1370-1374.

1

DAYONG GAO

#	Article	IF	CITATIONS
55	Convective Renal Replacement Therapies for Acute Renal Failure and End-Stage Renal Disease. , 2008, , 521-536.		0
56	Cryobiology Meets Biobanking in Hefei, China. Biopreservation and Biobanking, 2017, 15, 403-403.	0.5	0
57	Reconstitution Of The Microvascular Thrombopoietic Niche Reveals Cross-Talk Between Megakaryocytes and The Microvasculature. Blood, 2013, 122, 2456-2456.	0.6	Ο
58	Adequacy of Continuous Renal Replacement Therapy. , 2019, , 1029-1034.e2.		0
59	The ISBER 2022 Awards. Biopreservation and Biobanking, 2022, 20, 306-307.	0.5	0