
Mark Nicas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11717121/publications.pdf Version: 2024-02-01

MADE NICAS

#	Article	IF	CITATIONS
1	Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. Journal of Occupational and Environmental Hygiene, 2005, 2, 143-154.	0.4	671
2	A Study Quantifying the Hand-to-Face Contact Rate and Its Potential Application to Predicting Respiratory Tract Infection. Journal of Occupational and Environmental Hygiene, 2008, 5, 347-352.	0.4	239
3	Relative Contributions of Four Exposure Pathways to Influenza Infection Risk. Risk Analysis, 2009, 29, 1292-1303.	1.5	161
4	Estimating Exposure Intensity in an Imperfectly Mixed Room. AIHA Journal, 1996, 57, 542-550.	0.4	115
5	An Integrated Model of Infection Risk in a Health-Care Environment. Risk Analysis, 2006, 26, 1085-1096.	1.5	112
6	Respiratory Protection Against Mycobacterium tuberculosis: Quantitative Fit Test Outcomes for Five Type N95 Filtering-Facepiece Respirators. Journal of Occupational and Environmental Hygiene, 2004, 1, 22-28.	0.4	62
7	Informing Optimal Environmental Influenza Interventions: How the Host, Agent, and Environment Alter Dominant Routes of Transmission. PLoS Computational Biology, 2010, 6, e1000969.	1.5	59
8	Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission. Indoor Air, 1998, 8, 205-218.	2.0	50
9	A Multi-Zone Model Evaluation of the Efficacy of Upper-Room Air Ultraviolet Germicidal Irradiation. Journal of Occupational and Environmental Hygiene, 1999, 14, 317-328.	0.5	50
10	The Infectious Dose of <i>Francisella Tularensis</i> (Tularemia). Applied Biosafety, 2005, 10, 227-239.	0.2	45
11	ENVIRONMENTAL VERSUS ANALYTICAL VARIABILITY IN EXPOSURE MEASUREMENTS. AIHA Journal, 1991, 52, 553-557.	0.4	44
12	Respiratory protection and the risk ofMycobacterium tuberculosis infection. American Journal of Industrial Medicine, 1995, 27, 317-333.	1.0	44
13	Estimating Benzene Exposure at a Solvent Parts Washer. Journal of Occupational and Environmental Hygiene, 2006, 3, 284-291.	0.4	43
14	A TASK-BASED STATISTICAL MODEL OF A WORKER'S EXPOSURE DISTRIBUTION: PART Iâ€"DESCRIPTION OF THE MODEL. AIHA Journal, 1993, 54, 211-220.	0.4	42
15	The Infectious Dose of <i>Coxiella Burnetii </i> (Q Fever). Applied Biosafety, 2006, 11, 32-41.	0.2	41
16	Predicting Room Vapor Concentrations Due to Spills of Organic Solvents. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 445-454.	0.4	39
17	An Analytical Framework for Relating Dose, Risk, and Incidence: An Application to Occupational Tuberculosis Infection. Risk Analysis, 1996, 16, 527-538.	1.5	34
18	Characterizing the Risk of Infection from <i>Mycobacterium tuberculosis</i> in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment. Risk Analysis, 2009, 29, 355-365.	1.5	34

MARK NICAS

#	Article	IF	CITATIONS
19	Variability in Respiratory Protection and the Assigned Protection Factor. Journal of Occupational and Environmental Hygiene, 2004, 1, 99-109.	0.4	33
20	Markov Modeling of Contaminant Concentrations in Indoor Air. AIHA Journal, 2000, 61, 484-491.	0.4	33
21	Uncertainty in Exposure Estimates Made by Modeling Versus Monitoring. AlHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2002, 63, 275-283.	0.4	31
22	Tuberculosis Isolation Comparison of Written Procedures and Actual Practices in Three California Hospitals. Infection Control and Hospital Epidemiology, 2000, 21, 28-32.	1.0	30
23	Predicting Benzene Vapor Concentrations with a Near Field/Far Field Model. Journal of Occupational and Environmental Hygiene, 2008, 5, 599-608.	0.4	28
24	Markov Modeling of Contaminant Concentrations in Indoor Air. AIHAJ: A Journal for the Science of Occupational and Environmental Health and Safety, 2000, 61, 484-491.	0.4	27
25	The Infectious Dose of Variola (Smallpox) Virus. Applied Biosafety, 2004, 9, 118-127.	0.2	27
26	A TASK-BASED STATISTICAL MODEL OF A WORKER'S EXPOSURE DISTRIBUTION: PART II—APPLICATION TO SAMPLING STRATEGY. AIHA Journal, 1993, 54, 221-227.	0.4	26
27	A Risk Analysis for Airborne Pathogens with Low Infectious Doses: Application to Respirator Selection AgainstCoccidioides immitisSpores. Risk Analysis, 2002, 22, 1153-1163.	1.5	26
28	Evaluating the Control of Tuberculosis among Healthcare Workers: Adherence to CDC Guidelines of Three Urban Hospitals in California. Infection Control and Hospital Epidemiology, 1998, 19, 487-493.	1.0	22
29	Refining a Risk Model for Occupational Tuberculosis Transmission. AIHA Journal, 1996, 57, 16-22.	0.4	21
30	Estimating Methyl Bromide Exposure Due to Offgassing from Fumigated Commodities. Journal of Occupational and Environmental Hygiene, 2003, 18, 200-210.	0.5	18
31	The near field/far field model with constant application of chemical mass and exponentially decreasing emission of the mass applied. Journal of Occupational and Environmental Hygiene, 2016, 13, 519-528.	0.4	18
32	Using mathematical models to estimate exposure to workplace air contaminants. Chemical Health & Safety American Chemical Society, Division of Chemical Health and Safety, 2003, 10, 14-21.	0.1	17
33	Isolation Rooms for Tuberculosis Control. Infection Control and Hospital Epidemiology, 1993, 14, 619-622.	1.0	15
34	Modeling Respirator Penetration Values with the Beta Distribution: An Application to Occupational Tubercolosis Transmission. AIHA Journal, 1994, 55, 515-524.	0.4	14
35	Modeling Turbulent Diffusion and Advection of Indoor Air Contaminants by Markov Chains. AIHAJ: A Journal for the Science of Occupational and Environmental Health and Safety, 2001, 62, 149-158.	0.4	14
36	A point-source outbreak of Coccidioidomycosis among a highway construction crew. Journal of Occupational and Environmental Hygiene, 2018, 15, 57-62.	0.4	14

MARK NICAS

#	Article	IF	CITATIONS
37	Using a Spreadsheet to Compute Contaminant Exposure Concentrations Given a Variable Emission Rate. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 368-375.	0.4	13
38	A Risk Analysis Approach to Selecting Respiratory Protection Against Airborne Pathogens Used for Bioterrorism. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 95-101.	0.4	12
39	A PROBABILITY MODEL FOR ASSESSING EXPOSURE AMONG RESPIRATOR WEARERS: PART I—DESCRIPTION OF THE MODEL. AIHA Journal, 1992, 53, 411-418.	0.4	9
40	Experimental Determination of Supermicrometer Particle Fate Subsequent to a Point Release within a Room under Natural and Forced Mixing. Aerosol Science and Technology, 2009, 43, 921-938.	1.5	9
41	The Effect of Concentration Gradients on Deducing a Contaminant Generation Rate Function. AIHA Journal, 1998, 59, 680-688.	0.4	8
42	Task-Specific Lead Exposure During Residential Lead Hazard Reduction Projects. Journal of Occupational and Environmental Hygiene, 2001, 16, 671-678.	0.5	8
43	Computer Implementation of Mathematical Exposure Modeling. Journal of Occupational and Environmental Hygiene, 2003, 18, 566-571.	0.5	8
44	Assessing the Relative Importance of the Components of an Occupational Tuberculosis Control Program. Journal of Occupational and Environmental Medicine, 1998, 40, 648-654.	0.9	7
45	A Probability Model for Assessing Exposure among Respirator Wearers: Part l—Description of the Model. AIHA Journal, 1992, 53, 411-418.	0.4	7
46	Application of Mathematical Modeling for Ethylene Oxide Exposure Assessment. Journal of Occupational and Environmental Hygiene, 1992, 7, 744-748.	0.5	6
47	Is a Tuberculosis Exposure a Tuberculosis Exposure If No One Is Infected?. Infection Control and Hospital Epidemiology, 1999, 20, 92-94.	1.0	6
48	Experimental Evaluation of a Markov Multizone Model of Particulate Contaminant Transport. Annals of Occupational Hygiene, 2014, 58, 1032-45.	1.9	6
49	Benchmarking of a Markov Multizone Model of Contaminant Transport. Annals of Occupational Hygiene, 2014, 58, 1018-31.	1.9	5
50	A Risk/Cost Analysis of Alternative Screening Intervals for Occupational Tuberculosis Infection. AIHA Journal, 1998, 59, 104-112.	0.4	4
51	Regulating the Risk of Tuberculosis Transmission Among Health Care Workers. AIHAJ: A Journal for the Science of Occupational and Environmental Health and Safety, 2000, 61, 334-339.	0.4	4
52	Occupational Coccidioidomycosis in a heavy equipment operator. Journal of Occupational and Environmental Hygiene, 2018, 15, 841-846.	0.4	4
53	Estimating residential air exchange rates in rural Bangladesh using a near field-far field model. Building and Environment, 2021, 206, 108325.	3.0	4
54	A Quantitative Method for Estimating Dermal Benzene Absorption from Benzene-containing Hydrocarbon Liquids. International Journal of Occupational and Environmental Health, 2011, 17, 287-300.	1.2	4

Mark Nicas

#	Article	IF	CITATIONS
55	A Simulation Model for Occupational Tuberculosis Transmission. Risk Analysis, 1997, 17, 609-616.	1.5	3
56	Letter to the Editor. Journal of Occupational and Environmental Hygiene, 2009, 6, D69-D71.	0.4	3
57	Refining a Risk Model for Occupational Tuberculosis Transmission. AIHA Journal, 1996, 57, 16-22.	0.4	3
58	A PROBABILITY MODEL FOR ASSESSING EXPOSURE AMONG RESPIRATOR WEARERS: PART II—OVEREXPOSURE TO CHRONIC VERSUS ACUTE TOXICANTS. AIHA Journal, 1992, 53, 419-426.	0.4	2
59	Estimating Exposure Intensity Based on Odor. Annals of Work Exposures and Health, 2022, 66, 808-814.	0.6	2
60	Authors' response to Comments on Pettyet al.(2011), "A Quantitative Method for Estimating Dermal Benzene Absorption from Benzene-Containing Hydrocarbon Liquids,―IJOEH, 17:287–300 by Pamela R.D. Williams, Jennifer Sahmel, Annette L. Bunge, Jeffrey Knutsen, and John Spencer. International Journal of Occupational and Environmental Health, 2013, 19, 147-154.	1.2	1
61	Comment from the Editor-in-Chief on the Letter to the Editor from Larry Janssen and Roy Mckay representing the AIHA Respiratory Protection Committee. Journal of Occupational and Environmental Hygiene, 2017, 14, D184-D184.	0.4	1
62	Estimating Exposure Intensity in an Imperfectly Mixed Room. , 0, .		1