Gong Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171666/publications.pdf

Version: 2024-02-01

		201674	189892
54	2,779 citations	27	50
papers	citations	h-index	g-index
57	57	E 7	207
57	57	57	3867
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature, 2017, 545, 482-486.	27.8	318
2	Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Science Translational Medicine, 2016, 8, 369ra179.	12.4	194
3	Mosquito Defense Strategies against Viral Infection. Trends in Parasitology, 2016, 32, 177-186.	3.3	154
4	A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host and Microbe, 2019, 25, 101-112.e5.	11.0	154
5	A C-Type Lectin Collaborates with a CD45 Phosphatase Homolog to Facilitate West Nile Virus Infection of Mosquitoes. Cell, 2010, 142, 714-725.	28.9	151
6	Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nature Microbiology, 2016, 1, 16087.	13.3	127
7	Mosquito C-type lectins maintain gut microbiome homeostasis. Nature Microbiology, 2016, 1, .	13.3	126
8	A Mesh–Duox pathway regulates homeostasis in the insect gut. Nature Microbiology, 2017, 2, 17020.	13.3	110
9	Complement-Related Proteins Control the Flavivirus Infection of Aedes aegypti by Inducing Antimicrobial Peptides. PLoS Pathogens, 2014, 10, e1004027.	4.7	102
10	Transmission-Blocking Antibodies against Mosquito C-Type Lectins for Dengue Prevention. PLoS Pathogens, 2014, 10, e1003931.	4.7	87
11	Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nature Communications, 2018, 9, 673.	12.8	84
12	Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin- \hat{l}^2 receptor. Nature Immunology, 2018, 19, 342-353.	14.5	81
13	A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nature Communications, 2020, 11, 260.	12.8	76
14	IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLoS ONE, 2012, 7, e44153.	2.5	65
15	Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 2016, 238, 86-93.	2.1	63
16	Delineating antibody recognition against Zika virus during natural infection. JCI Insight, 2017, 2, .	5.0	61
17	Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virologica Sinica, 2017, 32, 16-22.	3.0	53
18	Vaccines and immunization strategies for dengue prevention. Emerging Microbes and Infections, 2016, 5, 1 -6.	6.5	50

#	Article	IF	CITATIONS
19	UBXN3B positively regulates STING-mediated antiviral immune responses. Nature Communications, 2018, 9, 2329.	12.8	50
20	Host serum iron modulates dengue virus acquisition by mosquitoes. Nature Microbiology, 2019, 4, 2405-2415.	13.3	49
21	The Roles of Direct Recognition by Animal Lectins in Antiviral Immunity and Viral Pathogenesis. Molecules, 2015, 20, 2272-2295.	3.8	47
22	Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nature Communications, 2017, 8, 1262.	12.8	45
23	An In Vivo Transfection Approach Elucidates a Role for Aedes aegypti Thioester-Containing Proteins in Flaviviral Infection. PLoS ONE, 2011, 6, e22786.	2.5	42
24	Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Frontiers in Cellular and Infection Microbiology, 2017, 7, 22.	3.9	41
25	Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nature Communications, 2019, 10, 1324.	12.8	41
26	Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Reviews in Molecular Medicine, 2019, 21, e1.	3.9	38
27	GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nature Metabolism, 2022, 4, 29-43.	11.9	37
28	A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell, 2022, 185, 2510-2522.e16.	28.9	36
29	A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes. PLoS Pathogens, 2015, 11, e1004848.	4.7	27
30	Interaction of Viruses with the Insect Intestine. Annual Review of Virology, 2021, 8, 115-131.	6.7	26
31	Roles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors. Trends in Parasitology, 2020, 36, 607-615.	3.3	22
32	Progress towards Understanding the Mosquito-Borne Virus Life Cycle. Trends in Parasitology, 2019, 35, 1009-1017.	3.3	21
33	A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
34	Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Communications Biology, 2020, 3, 556.	4.4	18
35	A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nature Metabolism, 2022, 4, 547-558.	11.9	14
36	A Retinol Derivative Inhibits SARS-CoV-2 Infection by Interrupting Spike-Mediated Cellular Entry. MBio, 2022, 13, .	4.1	14

#	Article	IF	Citations
37	A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes. Cell Reports, 2021, 37, 110091.	6.4	13
38	Development of a dual-functional conjugate of antigenic peptide and Fc-III mimetics (DCAF) for targeted antibody blocking. Chemical Science, 2019, 10, 3271-3280.	7.4	12
39	Insect C-Type Lectins in Microbial Infections. Advances in Experimental Medicine and Biology, 2020, 1204, 129-140.	1.6	12
40	Rapamycin inhibits pathogen transmission in mosquitoes by promoting immune activation. PLoS Pathogens, 2021, 17, e1009353.	4.7	11
41	Development of a ferritin-based nanoparticle vaccine against the SARS-CoV-2 Omicron variant. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	11
42	GP73 is a TBC-domain Rab GTPase-activating protein contributing to the pathogenesis of non-alcoholic fatty liver disease without obesity. Nature Communications, 2021, 12, 7004.	12.8	10
43	Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses, 2022, 14, 435.	3.3	10
44	Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Frontiers in Microbiology, 2020, 11, 362.	3.5	9
45	Identification of a Putative Invertebrate Helical Cytokine Similar to the Ciliary Neurotrophic Factor/Leukemia Inhibitory Factor Family by PSI-BLAST-Based Approach. Journal of Interferon and Cytokine Research, 2009, 29, 461-468.	1.2	8
46	Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathogens, 2022, 18, e1010552.	4.7	8
47	Susceptibility and interactions between Aedes mosquitoes and Zika viruses. Insect Science, 2020, 28, 1439-1451.	3.0	7
48	Prognostic significance of postoperative complication after curative resection for patients with gastric cancer. Journal of Cancer Research and Therapeutics, 2020, 16, 1611.	0.9	6
49	Evaluation of environment safety of a Japanese encephalitis live attenuated vaccine. Biologicals, 2019, 60, 36-41.	1.4	5
50	Zika Virus Infection in the Ovary Induces a Continuously Elevated Progesterone Level and Compromises Conception in Interferon Alpha/Beta Receptor-Deficient Mice. Journal of Virology, 2022, 96, JVI0118921.	3.4	5
51	Host immunity and vaccine development against Dengue virus. , 2022, , .		3
52	Techniques for Experimental Infection of Mosquitoes with West Nile Virus. Methods in Molecular Biology, 2016, 1435, 151-163.	0.9	2
53	Vector-Borne Viral Diseases. BioMed Research International, 2015, 2015, 1-1.	1.9	0
54	Diabetes and COVID-19, a link revealed., 0,,.		0