N K Anand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11716433/publications.pdf

Version: 2024-02-01

		394421	454955
53	1,025 citations	19	30
papers	citations	h-index	g-index
5 0	5 2	F-2	C15
53	53	53	615
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aerosol Deposition in Bends with Turbulent Flowâ€. Environmental Science & Technology, 1997, 31, 3371-3377.	10.0	84
2	The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates. Journal of Heat Transfer, 1992, 114, 515-518.	2.1	80
3	NUMERICAL STUDY OF HEAT AND MOMENTUM TRANSFER IN CHANNELS WITH WAVY WALLS. Numerical Heat Transfer; Part A: Applications, 2005, 47, 417-439.	2.1	71
4	HEAT TRANSFER IN A THREE-DIMENSIONAL CHANNEL WITH BAFFLES. Numerical Heat Transfer; Part A: Applications, 1996, 30, 189-205.	2.1	56
5	A Numerical Study of Fluid Flow and Heat Transfer over a Bank of Flat Tubes. Numerical Heat Transfer; Part A: Applications, 2005, 48, 359-385.	2.1	55
6	Experimental investigation of cross flow mixing in a randomly packed bed and streamwise vortex characteristics using particle image velocimetry and proper orthogonal decomposition analysis. Physics of Fluids, 2019, 31, .	4.0	54
7	Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step. Journal of Heat Transfer, 2005, 127, 1027-1036.	2.1	43
8	Turbulent Deposition of Aerosol Particles in Large Transport Tubes. Aerosol Science and Technology, 1996, 24, 107-116.	3.1	39
9	Free Convection Between Series of Vertical Parallel Plates With Embedded Line Heat Sources. Journal of Heat Transfer, 1991, 113, 108-115.	2.1	38
10	THREE-DIMENSIONAL HEAT TRANSFER IN A CHANNEL WITH A BAFFLE IN THE ENTRANCE REGION. Numerical Heat Transfer; Part A: Applications, 1997, 31, 21-35.	2.1	33
11	Flow Over a Three-Dimensional Horizontal Forward-Facing Step. Numerical Heat Transfer; Part A: Applications, 2007, 53, 1-17.	2.1	32
12	Turbulent Heat Transfer Between a Series of Parallel Plates With Surface-Mounted Discrete Heat Sources. Journal of Heat Transfer, 1994, 116, 577-587.	2.1	28
13	Deposition of Aerosol Particles in Contraction Fittings. Aerosol Science and Technology, 1996, 24, 205-216.	3.1	28
14	Numerical Study of Fluid Flow and Heat Transfer Over a Series of In-Line Noncircular Tubes Confined in a Parallel-Plate Channel. Numerical Heat Transfer, Part B: Fundamentals, 2006, 50, 97-119.	0.9	25
15	Numerical Prediction of the Performance of a Shrouded Probe Sampling in Turbulent Flow. Aerosol Science and Technology, 1993, 19, 294-304.	3.1	23
16	Laminar Heat Transfer Between a Series of Parallel Plates With Surface-Mounted Discrete Heat Sources. Journal of Electronic Packaging, Transactions of the ASME, 1995, 117, 52-62.	1.8	23
17	Forced Convection Over a Three-Dimensional Horizontal Backward Facing Step. International Journal for Computational Methods in Engineering Science and Mechanics, 2005, 6, 225-234.	2.1	22
18	Condensation Heat Transfer Inside Smooth Horizontal Tubes for R-22 and R-32/125 Mixture. HVAC and R Research, 1996, 2, 79-100.	0.6	21

#	Article	IF	CITATIONS
19	Mixed Convective Heat Transfer Between a Series of Vertical Parallel Plates With Planar Heat Sources. Journal of Heat Transfer, 1996, 118, 984-990.	2.1	19
20	Three-Dimensional Combined Convective-Radiative Heat Transfer over a Horizontal Backward-Facing Step—A Finite-Volume Method. Numerical Heat Transfer; Part A: Applications, 2008, 54, 109-129.	2.1	17
21	Periodically Fully-Developed Flow and Heat Transfer Over Flat and Oval Tubes Using a Control Volume Finite-Element Method. Numerical Heat Transfer; Part A: Applications, 2010, 57, 642-665.	2.1	17
22	HEAT TRANSFER IN A SERPENTINE CHANNEL WITH A SERIES OF RIGHT-ANGLE TURNS. Numerical Heat Transfer; Part A: Applications, 1993, 23, 189-210.	2.1	16
23	Numerical simulation of flow and heat transfer in radially rotating microchannels. Microfluidics and Nanofluidics, 2013, 15, 397-413.	2.2	16
24	Aerosol penetration through a model transport system: comparison of theory and experiment. Environmental Science & Environment	10.0	14
25	Optimization of Aerosol Penetration through Transport Lines. Aerosol Science and Technology, 1992, 16, 105-112.	3.1	14
26	FINITE-ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS. Numerical Heat Transfer, 1988, 13, 189-203.	0.5	12
27	Aerosol particle losses in isokinetic sampling probe inlets. Environmental Science & Environmental Sci	10.0	12
28	Periodically fully developed flow in channels with conducting blockages. Journal of Thermophysics and Heat Transfer, 1992, 6, 91-97.	1.6	10
29	A STUDY ON CONVERGENCE CRITERIA FOR A SIMPLE-BASED FINITE-VOLUME ALGORITHM. Numerical Heat Transfer, Part B: Fundamentals, 1998, 34, 401-417.	0.9	10
30	A Parallel Multigrid Finite-Volume Solver on a Collocated Grid for Incompressible Navier-Stokes Equations. Numerical Heat Transfer, Part B: Fundamentals, 2015, 67, 376-409.	0.9	10
31	An experimental study of solid and liquid aerosol transport in a horizontal square channel. Aerosol Science and Technology, 2020, 54, 1399-1423.	3.1	9
32	Aerosol Deposition in Sampling Probes. Aerosol Science and Technology, 1992, 17, 326-332.	3.1	8
33	HEAT TRANSFER IN RECTANGULAR CHANNELS WITH A SERIES OF NORMALLY IN-LINE POSITIONED PLATES. Numerical Heat Transfer; Part A: Applications, 1995, 27, 19-34.	2.1	8
34	Parallelization of a Simple-Based Algorithm to Simulate Mixed Convective Flow Over a Backward-Facing Step. Numerical Heat Transfer, Part B: Fundamentals, 2009, 56, 105-118.	0.9	8
35	Experimental Measurements of the Wake of a Sphere at Subcritical Reynolds Numbers. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143 , .	1.5	8
36	An Analytical Model to Predict Condensation of R-410A in a Horizontal Rectangular Channel. Journal of Heat Transfer, 2000, 122, 613-620.	2.1	8

#	Article	IF	Citations
37	Some Studies of the Effects of Axial Conduction in a Tube Wall on the Steady-State Laminar Convective Heat Transfer. Journal of Heat Transfer, 1987, 109, 1025-1028.	2.1	7
38	TRANSIENT CONJUGATE HEAT TRANSFER IN THE MATRIX OF A THERMAL REGENERATOR. Numerical Heat Transfer, 1988, 13, 167-187.	0.5	7
39	Simulation of Unsteady Incompressible Viscous Flow using Higher-Order Implicit Runge-Kutta Methods—Staggered Grid ^{â€} . Numerical Heat Transfer, Part B: Fundamentals, 2007, 52, 471-488.	0.9	6
40	Condensation of R-410A in a Rectangular Channel. HVAC and R Research, 1999, 5, 97-122.	0.6	5
41	Co-Located Variables Approach Using Implicit Runge-Kutta Methods for Unsteady Incompressible Flow Simulation. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54, 291-313.	0.9	5
42	OUTFLOW BOUNDARY CONDITION FOR THE TEMPERATURE FIELD IN CHANNELS WITH PERIODICALLY POSITIONED HEAT SOURCES IN THE PRESENCE OF WALL CONDUCTION. Numerical Heat Transfer, Part B: Fundamentals, 1994, 25, 163-176.	0.9	4
43	Flow and heat transfer in the wake of a triangular arrangement of spheres. Physics of Fluids, 2021, 33,	4.0	4
44	CALCULATION OF TRANSIENT TURBULENT HEAT TRANSFER IN A RECTANGULAR CHANNEL: TWO-LAYER MODEL. Numerical Heat Transfer, 1988, 13, 467-480.	0.5	3
45	Remarks on the Potential Cross Flow Over Tube Banks. Journal of Applied Mechanics, Transactions ASME, 1989, 56, 476-479.	2.2	3
46	A Predictive Model for Aerosol Transmission through a Shrouded Probe. Environmental Science & Emp; Technology, 1996, 30, 3192-3198.	10.0	3
47	Preconceptual Design of Multifunctional Gas-Cooled Cartridge Loop for the Versatile Test Reactor: Instrumentation and Measurement—Part II. Nuclear Science and Engineering, 0, , 1-19.	1.1	3
48	Simulation of Unsteady Incompressible Viscous Flow Using Higher Order Implicit Runge-Kutta Methods: Staggered Grid., 2007,, 403.		2
49	A Numerical Study of Unsteady Laminar Flow and Heat Transfer Through an Array of Rotating Rectangular Microchannels. , $2011, \ldots$		2
50	An Experimental Study of Aerosol Penetration Through Horizontal Tubes and Strom-Type Loops. Health Physics, 1996, 71, 886-895.	0.5	0
51	Numerical Simulation of Three-Dimensional Combined Convective Radiative Heat Transfer—A Finite Volume Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2007, 8, 429-437.	2.1	0
52	Study of Compact Heat Exchangers Operating in Self-Sustained Oscillatory Flows. Journal of Thermal Science and Engineering Applications, 2021, 13, .	1.5	0
53	Preconceptual Design of Multifunctional Gas-Cooled Cartridge Loop for the Versatile Test Reactorâ€"Part I. Nuclear Science and Engineering, 0, , 1-32.	1.1	0