David Popp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11716151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The structure of a 15-stranded actin-like filament from Clostridium botulinum. Nature Communications, 2019, 10, 2856.	12.8	7
2	Advances in Structural Biology and the Application to Biological Filament Systems. BioEssays, 2018, 40, e1700213.	2.5	8
3	Flowâ€eligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
4	Structural complexity of filaments formed from the actin and tubulin folds. Communicative and Integrative Biology, 2016, 9, e1242538.	1.4	8
5	Large-scale purification and in vitro characterization of the assembly of MreB from Leptospira interrogans. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1942-1952.	2.4	10
6	Novel actin filaments fromBacillus thuringiensisform nanotubules for plasmid DNA segregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1200-E1205.	7.1	16
7	In search of the primordial actin filament. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9150-9151.	7.1	7
8	The evolution of compositionally and functionally distinct actin filaments. Journal of Cell Science, 2015, 128, 2009-2019.	2.0	247
9	Microtubule-like Properties of the Bacterial Actin Homolog ParM-R1. Journal of Biological Chemistry, 2012, 287, 37078-37088.	3.4	4
10	Novel Actin-like Filament Structure from Clostridium tetani. Journal of Biological Chemistry, 2012, 287, 21121-21129.	3.4	29
11	Supramolecular cellular filament systems: How and why do they form?. Cytoskeleton, 2012, 69, 71-87.	2.0	13
12	Many ways to build an actin filament. Molecular Microbiology, 2011, 80, 300-308.	2.5	21
13	Suprastructures and Dynamic Properties of Mycobacterium tuberculosis FtsZ. Journal of Biological Chemistry, 2010, 285, 11281-11289.	3.4	42
14	Structure and Filament Dynamics of the pSK41 Actin-like ParM Protein. Journal of Biological Chemistry, 2010, 285, 10130-10140.	3.4	43
15	Filament Structure, Organization, and Dynamics in MreB Sheets. Journal of Biological Chemistry, 2010, 285, 15858-15865.	3.4	59
16	Bacterial cytoskeleton suprastructures and their physical origin. Communicative and Integrative Biology, 2010, 3, 451-453.	1.4	1
17	Polymeric Structures and Dynamic Properties of the Bacterial Actin AlfA. Journal of Molecular Biology, 2010, 397, 1031-1041.	4.2	35
18	Molecular mechanism of bundle formation by the bacterial actin ParM. Biochemical and Biophysical Research Communications, 2010, 391, 1598-1603.	2.1	16

David Popp

#	Article	IF	CITATIONS
19	FtsZ condensates: An in vitro electron microscopy study. Biopolymers, 2009, 91, 340-350.	2.4	108
20	Protofilament Formation of ParM Mutants. Journal of Molecular Biology, 2009, 388, 209-217.	4.2	7
21	Single molecule polymerization, annealing and bundling dynamics of SipA induced actin filaments. Cytoskeleton, 2008, 65, 165-177.	4.4	11
22	Effect of shortâ€range forces on the length distribution of fibrous cytoskeletal proteins. Biopolymers, 2008, 89, 711-721.	2.4	16
23	Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability. EMBO Journal, 2008, 27, 570-579.	7.8	80
24	Concerning the dynamic instability of actin homolog ParM. Biochemical and Biophysical Research Communications, 2007, 353, 109-114.	2.1	28
25	Crowded Surfaces Change Annealing Dynamics of Actin Filaments. Journal of Molecular Biology, 2007, 368, 365-374.	4.2	17
26	Direct visualization of actin nematic network formation and dynamics. Biochemical and Biophysical Research Communications, 2006, 351, 348-353.	2.1	24
27	An Atomic Model of the Unregulated Thin Filament Obtained by X-ray Fiber Diffraction on Oriented Actin-Tropomyosin Gels. Journal of Molecular Biology, 1995, 246, 108-119.	4.2	216
28	Refinement of the F-Actin Model against X-ray Fiber Diffraction Data by the Use of a Directed Mutation Algorithm. Journal of Molecular Biology, 1993, 234, 826-836.	4.2	505
29	X-ray diffraction studies on oriented gels of vertebrate smooth muscle thin filaments. Journal of Molecular Biology, 1992, 224, 65-76.	4.2	21
30	Atomic model of the actin filament. Nature, 1990, 347, 44-49.	27.8	1,571
31	Supercoiling of f-Actin filaments. Journal of Structural Biology, 1990, 103, 225-231.	2.8	10