
Ralf Schnabel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11716047/publications.pdf Version: 2024-02-01

PALE SCHNAREL

#	Article	IF	CITATIONS
1	Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2021, 148, .	2.5	11
2	ldentification of essential genes in <i>Caenorhabditis elegans</i> through whole-genome sequencing of legacy mutant collections. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
3	PCMD-1 Organizes Centrosome Matrix Assembly in C.Âelegans. Current Biology, 2019, 29, 1324-1336.e6.	3.9	26
4	Asymmetric division events promote variability in cell cycle duration in animal cells and Escherichia coli. Nature Communications, 2019, 10, 1901.	12.8	6
5	Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLoS Genetics, 2019, 15, e1007981.	3.5	36
6	Reduction of mRNA export unmasks different tissue sensitivities to low mRNA levels during Caenorhabditis elegans development. PLoS Genetics, 2019, 15, e1008338.	3.5	3
7	Twenty million years of evolution: The embryogenesis of four Caenorhabditis species are indistinguishable despite extensive genome divergence. Developmental Biology, 2019, 447, 182-199.	2.0	20
8	Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Communicative and Integrative Biology, 2018, 11, 1-7.	1.4	8
9	Neurotransmitter-mediated activity spatially controls neuronal migration in the zebrafish cerebellum. PLoS Biology, 2018, 16, e2002226.	5.6	14
10	MIP-MAP: High-Throughput Mapping of <i>Caenorhabditis elegans</i> Temperature-Sensitive Mutants via Molecular Inversion Probes. Genetics, 2017, 207, 447-463.	2.9	23
11	Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handbook of Experimental Pharmacology, 2016, 234, 249-274.	1.8	9
12	Genetics of Lipid-Storage Management in <i>Caenorhabditis elegans</i> Embryos. Genetics, 2016, 202, 1071-1083.	2.9	12
13	Neuroendocrine modulation sustains the C. elegans forward motor state. ELife, 2016, 5, .	6.0	48
14	Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on the Adhesion GPCR LAT-1. PLoS Genetics, 2015, 11, e1005624.	3.5	80
15	The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors. Cell Reports, 2012, 2, 321-331.	6.4	123
16	Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos. Glycoconjugate Journal, 2012, 29, 135-145.	2.7	7
17	Fate Specification and Tissue-specific Cell Cycle Control of the Caenorhabditis elegans Intestine. Molecular Biology of the Cell, 2010, 21, 725-738.	2.1	12
18	<i>ccz-1</i> mediates the digestion of apoptotic corpses in <i>C. elegans</i> . Journal of Cell Science, 2010, 123, 2001-2007.	2.0	30

RALF SCHNABEL

#	Article	IF	CITATIONS
19	The Wnt Pathway Controls Cell Death Engulfment, Spindle Orientation, and Migration through CED-10/Rac. PLoS Biology, 2010, 8, e1000297.	5.6	90
20	Functional Dissection of Caenorhabditis elegans CLK-2/TEL2 Cell Cycle Defects during Embryogenesis and Germline Development. PLoS Genetics, 2009, 5, e1000451.	3.5	43
21	Coenzyme Q supports distinct developmental processes in Caenorhabditis elegans. Mechanisms of Ageing and Development, 2009, 130, 145-153.	4.6	22
22	Latrophilin Signaling Links Anterior-Posterior Tissue Polarity and Oriented Cell Divisions in the C.Âelegans Embryo. Developmental Cell, 2009, 17, 494-504.	7.0	142
23	Behavioral and synaptic defects in <i>C. elegans</i> lacking the NKâ€2 homeobox gene <i>cehâ€28</i> . Developmental Neurobiology, 2008, 68, 421-433.	3.0	15
24	Embryology of a planktonic tunicate reveals traces of sessility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7229-7234.	7.1	99
25	The HLH-6 Transcription Factor Regulates C. elegans Pharyngeal Gland Development and Function. PLoS Genetics, 2008, 4, e1000222.	3.5	38
26	High-Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans. PLoS Biology, 2007, 5, e237.	5.6	346
27	A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. EMBO Journal, 2007, 26, 5071-5082.	7.8	94
28	What a couple of dimensions can do for you: Comparative developmental studies using 4D microscopy–examples from tardigrade development. Integrative and Comparative Biology, 2006, 46, 151-161.	2.0	38
29	Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Developmental Biology, 2006, 294, 418-431.	2.0	69
30	Global cell sorting is mediated by local cell–cell interactions in the C. elegans embryo. Developmental Biology, 2006, 294, 432-444.	2.0	29
31	A 4D-microscopic analysis of the germ band in the isopod crustacean Porcellio scaber (Malacostraca,) Tj ETQq1 1 216, 755-767.	0.784314 0.9	4 rgBT /Overla 14
32	Differential expression pattern of coq-8 gene during development in Caenorhabditis elegans. Gene Expression Patterns, 2006, 6, 433-439.	0.8	2
33	A Posterior Centre Establishes and Maintains Polarity of the Caenorhabditis elegans Embryo by a Wnt-Dependent Relay Mechanism. PLoS Biology, 2006, 4, e396.	5.6	64
34	The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development (Cambridge), 2005, 132, 1349-1361.	2.5	112
35	<i>C. elegans</i> knockouts in ubiquinone biosynthesis genes result in different phenotypes during larval development. BioFactors, 2005, 25, 21-29.	5.4	23
36	Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature, 2005, 434, 93-99.	27.8	238

RALF SCHNABEL

#	Article	IF	CITATIONS
37	Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nature Cell Biology, 2004, 6, 656-664.	10.3	156
38	Differential proteome analysis and mass spectrometric characterization of germ line development-related proteins ofCaenorhabditis elegans. Proteomics, 2004, 4, 2283-2295.	2.2	32
39	Functional analysis of the single calmodulin gene in the nematode Caenorhabditis elegans by RNA interference and 4-D microscopy. European Journal of Cell Biology, 2003, 82, 557-563.	3.6	14
40	CSC-1. Journal of Cell Biology, 2003, 161, 229-236.	5.2	93
41	The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development (Cambridge), 2003, 130, 3589-3606.	2.5	112
42	Conserved Regulation of the Caenorhabditis elegans labial/Hox1 Gene ceh-13. Developmental Biology, 2002, 242, 96-108.	2.0	66
43	Oncogenic potential of a C.eleganscdc25 gene is demonstrated by a gain-of-function allele. EMBO Journal, 2002, 21, 665-674.	7.8	44
44	A ubiquitin C-terminal hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the early <i>C. elegans</i> embryo. Journal of Cell Science, 2002, 115, 2293-2302.	2.0	23
45	Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature, 2001, 412, 202-206.	27.8	282
46	Cyk-4. Journal of Cell Biology, 2000, 149, 1391-1404.	5.2	356
47	Dissection of Cell Division Processes in the One Cell Stage Caenorhabditis elegans Embryo by Mutational Analysis. Journal of Cell Biology, 1999, 144, 927-946.	5.2	165
48	Ballistic transformation of Caenorhabditis elegans. Gene, 1999, 229, 31-35.	2.2	98
49	Complexity of Developmental Control: Analysis of Embryonic Cell Lineage Specification in Caenorhabditis elegans Using pes-1 as an Early Marker. Genetics, 1999, 151, 131-141.	2.9	11
50	Assessing Normal Embryogenesis inCaenorhabditis elegansUsing a 4D Microscope: Variability of Development and Regional Specification. Developmental Biology, 1997, 184, 234-265.	2.0	302
51	Why does a nematode have an invariant cell lineage?. Seminars in Cell and Developmental Biology, 1997, 8, 341-349.	5.0	21
52	Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature, 1997, 390, 294-298.	27.8	168
53	Hox genes misled by local environments. Nature, 1997, 385, 588-589.	27.8	6
54	Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle of Caenorhabditis elegans. Developmental Biology, 1996, 173, 228-242.	2.0	59

RALF SCHNABEL

#	Article	IF	CITATIONS
55	Pattern formation: Regional specification in the earlyC. elegans embryo. BioEssays, 1996, 18, 591-594.	2.5	27
56	pha-1, a selectable marker for gene transfer inC.elegans. Nucleic Acids Research, 1994, 22, 1762-1763.	14.5	179
57	Cellular interactions involved in the determination of the early C. elegans embryo. Mechanisms of Development, 1991, 34, 85-99.	1.7	45
58	Early determinative events in Caenorhabditis elegans. Current Opinion in Genetics and Development, 1991, 1, 179-184.	3.3	10
59	The glp-1 locus and cellular interactions in early C. elegans embryos. Cell, 1987, 51, 601-611.	28.9	337