
## Hussein Daoud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11715930/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | De Novo Mutations in Moderate or Severe Intellectual Disability. PLoS Genetics, 2014, 10, e1004772.                                                                                                                                   | 3.5  | 364       |
| 2  | Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nature Reviews<br>Genetics, 2009, 10, 769-782.                                                                                                           | 16.3 | 321       |
| 3  | Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability. American Journal of Human Genetics, 2011, 88, 306-316.                                                | 6.2  | 310       |
| 4  | Direct Measure of the De Novo Mutation Rate in Autism and Schizophrenia Cohorts. American Journal of Human Genetics, 2010, 87, 316-324.                                                                                               | 6.2  | 222       |
| 5  | CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 2016, 7, 11253.                                                                                                                   | 12.8 | 174       |
| 6  | Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis. Human Molecular Genetics, 2015, 24, 1363-1373.                                                                                | 2.9  | 122       |
| 7  | A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions<br>in <i>C9orf72</i> reveals marked differences in results among 14 laboratories. Journal of Medical<br>Genetics, 2014, 51, 419-424. | 3.2  | 118       |
| 8  | Recent advances in the genetics of amyotrophic lateral sclerosis. Current Neurology and<br>Neuroscience Reports, 2009, 9, 198-205.                                                                                                    | 4.2  | 103       |
| 9  | Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiology of Aging, 2012, 33, 839.e5-839.e9.                                                                                                                        | 3.1  | 87        |
| 10 | Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit. Cmaj, 2016, 188, E254-E260.                                                                                                            | 2.0  | 86        |
| 11 | ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1.178.e9.                                                                                                                        | 3.1  | 86        |
| 12 | Association of Long ATXN2 CAG Repeat Sizes With Increased Risk of Amyotrophic Lateral Sclerosis.<br>Archives of Neurology, 2011, 68, 739-42.                                                                                          | 4.5  | 80        |
| 13 | Identification of rare protein disulfide isomerase gene variants in amyotrophic lateral sclerosis patients. Gene, 2015, 566, 158-165.                                                                                                 | 2.2  | 70        |
| 14 | Resequencing of 29 Candidate Genes in Patients With Familial and Sporadic Amyotrophic Lateral<br>Sclerosis. Archives of Neurology, 2011, 68, 587-93.                                                                                  | 4.5  | 52        |
| 15 | Identification of a pathogenic <i>FTO</i> mutation by next-generation sequencing in a newborn with growth retardation and developmental delay. Journal of Medical Genetics, 2016, 53, 200-207.                                        | 3.2  | 50        |
| 16 | Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis. Neurobiology of Aging, 2011, 32, 555.e13-555.e14.                                                                                                             | 3.1  | 43        |
| 17 | Case report of novel DYRK1A mutations in 2 individuals with syndromic intellectual disability and a review of the literature. BMC Medical Genetics, 2016, 17, 15.                                                                     | 2.1  | 42        |
| 18 | UBQLN2 mutations are rare in French and French–Canadian amyotrophic lateral sclerosis.<br>Neurobiology of Aging, 2012, 33, 2230.e1-2230.e5.                                                                                           | 3.1  | 40        |

HUSSEIN DAOUD

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2013, 34, 1311.e1-1311.e2.                                                                                                          | 3.1  | 31        |
| 20 | Analysis of the UNC13A Gene as a Risk Factor for Sporadic Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 516-7.                                                                                                         | 4.5  | 28        |
| 21 | Reinterpretation of sequence variants: one diagnostic laboratory's experience, and the need for<br>standard guidelines. Genetics in Medicine, 2018, 20, 365-368.                                                                         | 2.4  | 28        |
| 22 | Data sharing as a national quality improvement program: reporting on BRCA1 and BRCA2<br>variant-interpretation comparisons through the Canadian Open Genetics Repository (COGR). Genetics<br>in Medicine, 2018, 20, 294-302.             | 2.4  | 27        |
| 23 | C9orf72 Hexanucleotide Repeat Expansions as the Causative Mutation for Chromosome 9p21–Linked<br>Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Archives of Neurology, 2012, 69, 1159-63.                                    | 4.5  | 22        |
| 24 | Exome sequencing identifies recessive CDK5RAP2 variants in patients with isolated agenesis of corpus callosum. European Journal of Human Genetics, 2016, 24, 607-610.                                                                    | 2.8  | 22        |
| 25 | Investigation of C9orf72 repeat expansions in Parkinson's disease. Neurobiology of Aging, 2013, 34, 1710.e7-1710.e9.                                                                                                                     | 3.1  | 21        |
| 26 | Detailed Biochemical and Bioenergetic Characterization of FBXL4-Related Encephalomyopathic<br>Mitochondrial DNA Depletion. JIMD Reports, 2015, 27, 1-9.                                                                                  | 1.5  | 19        |
| 27 | Analysis of <i>DPP6</i> and <i>FGGY</i> as candidate genes for amyotrophic lateral sclerosis.<br>Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 389-391.                                                      | 2.1  | 18        |
| 28 | C9orf72 Repeat Expansions in Rapid Eye Movement Sleep Behaviour Disorder. Canadian Journal of<br>Neurological Sciences, 2014, 41, 759-762.                                                                                               | 0.5  | 18        |
| 29 | A role for ubiquilin 2 mutations in neurodegeneration. Nature Reviews Neurology, 2011, 7, 599-600.                                                                                                                                       | 10.1 | 16        |
| 30 | Resolution of refractory hypotension and anuria in a premature newborn with lossâ€ofâ€function of ACE. American Journal of Medical Genetics, Part A, 2015, 167, 1654-1658.                                                               | 1.2  | 10        |
| 31 | Mosaic <i>KRAS</i> mutation in a patient with encephalocraniocutaneous lipomatosis and renovascular hypertension. American Journal of Medical Genetics, Part A, 2018, 176, 2523-2527.                                                    | 1.2  | 7         |
| 32 | Genetic Diagnostic Testing for Inherited Cardiomyopathies. Journal of Molecular Diagnostics, 2019, 21, 437-448.                                                                                                                          | 2.8  | 7         |
| 33 | Identification of a novel homozygous SPG7 mutation by whole exome sequencing in a Greek family<br>with a complicated form of hereditary spastic paraplegia. European Journal of Medical Genetics, 2015,<br>58, 573-577.                  | 1.3  | 6         |
| 34 | Chromosome 9p21 in amyotrophic lateral sclerosis: the plot thickens. Lancet Neurology, The, 2010, 9, 945-947.                                                                                                                            | 10.2 | 3         |
| 35 | Leveraging the power of new molecular technologies in the clinical setting requires unprecedented<br>awareness of limitations and drawbacks: experience of one diagnostic laboratory. Journal of Medical<br>Genetics, 2019, 56, 408-412. | 3.2  | 3         |
| 36 | Adopting High-Resolution Allele Frequencies Substantially Expedites Variant Interpretation in Genetic<br>Diagnostic Laboratories. Journal of Molecular Diagnostics, 2019, 21, 602-611.                                                   | 2.8  | 0         |