Jeffrey Jones Venezuela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo performance of a rare earth free Mg–Zn–Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices. Bioactive Materials, 2022, 12, 85-96.	15.6	10
2	Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials, 2022, 280, 121301.	11.4	33
3	Design, mechanical and degradation requirements of biodegradable metal mesh for pelvic floor reconstruction. Biomaterials Science, 2022, 10, 3371-3392.	5.4	6
4	Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition. Journal of Materials Science and Technology, 2022, 125, 1-14.	10.7	17
5	The influence of phosphorus on the temper embrittlement and hydrogen embrittlement of some dual-phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 854, 143379.	5.6	5
6	Influence of hydrogen on the S–N fatigue of DP1180 advanced high-strength steel. Corrosion Science, 2022, 205, 110465.	6.6	4
7	In Vivo Evaluation of Bioabsorbable Feâ€35Mnâ€1Ag: First Reports on In Vivo Hydrogen Gas Evolution in Feâ€Based Implants. Advanced Healthcare Materials, 2021, 10, e2000667.	7.6	22
8	The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn–Ca–Cu alloys for absorbable wound closure device applications. Bioactive Materials, 2021, 6, 1436-1451.	15.6	42
9	Hydrogen-induced delayed fracture of a 1180â€⁻MPa martensitic advanced high-strength steel under U-bend loading. Materials Today Communications, 2021, 26, 101887.	1.9	3
10	Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe-18Mn-0.6C TWIP steel studied using the linearly increasing stress test. Corrosion Science, 2021, 185, 109440.	6.6	27
11	Hydrogen-induced fast fracture in notched 1500 and 1700 MPa class automotive martensitic advanced high-strength steel. Corrosion Science, 2021, 188, 109550.	6.6	21
12	Ultrasonic treatment for the refinement of brittle CaZn13 phases in a biomedical Zn-Cu-Ca alloy. Materials Letters, 2021, 305, 130754.	2.6	7
13	Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomaterialia, 2020, 103, 346-360.	8.3	111
14	Hydrogen embrittlement of an automotive 1700 MPa martensitic advanced high-strength steel. Corrosion Science, 2020, 171, 108726.	6.6	42
15	Effect of plastic strain damage on the hydrogen embrittlement of a dual-phase (DP) and a quenching and partitioning (Q&P) advanced high-strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139343.	5.6	20
16	<i>In</i> - <i>Situ</i> Observation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline Sn _{0.98} Se. Journal of Physical Chemistry Letters, 2019, 10, 6512-6517.	4.6	32
17	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	5.2	62
18	Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corrosion Science, 2018, 135, 120-135	6.6	42

JEFFREY JONES VENEZUELA

#	Article	IF	CITATIONS
19	Equivalent Hydrogen Fugacity during Electrochemical Charging of 980DP Steel Determined by Thermal Desorption Spectroscopy. Advanced Engineering Materials, 2018, 20, 1700469.	3.5	21
20	Hydrogen Trapping in Some Automotive Martensitic Advanced High‣trength Steels. Advanced Engineering Materials, 2018, 20, 1700468.	3.5	46
21	The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels. Materials Today Communications, 2018, 17, 1-14.	1.9	72
22	Evaluation of automobile service performance using laboratory testing. Materials Science and Technology, 2018, 34, 1893-1909.	1.6	13
23	Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service. Engineering Failure Analysis, 2018, 94, 249-273.	4.0	24
24	Hydrogen influence on some advanced high-strength steels. Corrosion Science, 2017, 125, 114-138.	6.6	90
25	Equivalent hydrogen fugacity during electrochemical charging of some martensitic advanced high-strength steels. Corrosion Science, 2017, 127, 45-58.	6.6	44
26	Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions. Corrosion Science, 2016, 111, 602-624.	6.6	65
27	Hydrogen Concentration in Dualâ€Phase (DP) and Quenched and Partitioned (Q&P) Advanced Highâ€Strength Steels (AHSS) under Simulated Service Conditions Compared with Cathodic Charging Conditions. Advanced Engineering Materials, 2016, 18, 1588-1599.	3.5	28
28	Hydrogen trapping in some advanced high strength steels. Corrosion Science, 2016, 111, 770-785.	6.6	105
29	A review of the influence of hydrogen on the mechanical properties of DP, TRIP, and TWIP advanced high-strength steels for auto construction. Corrosion Reviews, 2016, 34, 127-152.	2.0	70
30	A review of hydrogen embrittlement of martensitic advanced high-strength steels. Corrosion Reviews, 2016, 34, 153-186.	2.0	141
31	The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test. Corrosion Science, 2015, 99, 98-117.	6.6	115