
Jeong Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11715575/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nature Communications, 2021, 12, 3693.	5.8	87
2	Triboelectric Nanogenerators: High Permittivity CaCu ₃ Ti ₄ O ₁₂ Particleâ€Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators (Adv. Energy Mater. 9/2020). Advanced Energy Materials, 2020, 10, 2070040.	10.2	19
3	High Permittivity CaCu ₃ Ti ₄ O ₁₂ Particleâ€Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903524.	10.2	85
4	Self-boosted power generation of triboelectric nanogenerator with glass transition by friction heat. Nano Energy, 2020, 74, 104840.	8.2	24
5	Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58, 579-584.	8.2	118
6	Self-Powered Motion-Driven Triboelectric Electroluminescence Textile System. ACS Applied Materials & Interfaces, 2019, 11, 5200-5207.	4.0	72
7	Sustainable direct current powering a triboelectric nanogenerator <i>via</i> a novel asymmetrical design. Energy and Environmental Science, 2018, 11, 2057-2063.	15.6	153
8	Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment. Advanced Functional Materials, 2017, 27, 1700702.	7.8	149
9	Highâ€Performance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions. Advanced Energy Materials, 2017, 7, 1700289.	10.2	129
10	Energy Harvesting: Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment (Adv. Funct. Mater. 22/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
11	Boosting Powerâ€Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Advanced Energy Materials, 2017, 7, 1600988.	10.2	282
12	High-performance triboelectric nanogenerators with artificially well-tailored interlocked interlocked interfaces. Nano Energy, 2016, 27, 595-601.	8.2	66
13	Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene. ACS Nano, 2016, 10, 7297-7302.	7.3	183
14	Formation of Flexible and Transparent Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Film. Journal of Electronic Materials, 2016, 45, 4265-4269.	1.0	8
15	Flexible and transparent TiO ₂ /Ag/ITO multilayer electrodes on PET substrates for organic photonic devices. Journal of Materials Research, 2015, 30, 1593-1598.	1.2	11
16	Energy Harvesting: Micropatterned P(VDFâ€TrFE) Filmâ€Based Piezoelectric Nanogenerators for Highly Sensitive Selfâ€Powered Pressure Sensors (Adv. Funct. Mater. 21/2015). Advanced Functional Materials, 2015, 25, 3276-3276.	7.8	8
17	Micropatterned P(VDFâ€TrFE) Filmâ€Based Piezoelectric Nanogenerators for Highly Sensitive Selfâ€Powered Pressure Sensors. Advanced Functional Materials, 2015, 25, 3203-3209.	7.8	334
18	Shape memory polymer-based self-healing triboelectric nanogenerator. Energy and Environmental Science, 2015, 8, 3605-3613.	15.6	210