
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11714393/publications.pdf Version: 2024-02-01

LILIN

#	Article	IF	CITATIONS
1	Synthesis of Î ³ -Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy & Fuels, 2009, 23, 3853-3858.	5.1	349
2	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	3.6	329
3	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	16.4	308
4	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
5	Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied Catalysis B: Environmental, 2014, 147, 827-834.	20.2	285
6	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2696-2706.	6.8	269
7	Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides. Molecules, 2010, 15, 5258-5272.	3.8	259
8	Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 2014, 40, 608-620.	16.4	232
9	Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental, 2015, 174-175, 225-243.	20.2	216
10	Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 2018, 8, 2959-2980.	11.2	210
11	Nanosizing a Metal–Organic Framework Enzyme Carrier for Accelerating Nerve Agent Hydrolysis. ACS Nano, 2016, 10, 9174-9182.	14.6	202
12	Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chemistry, 2019, 21, 3744-3768.	9.0	200
13	Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 287-296.	16.4	165
14	Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Applied Energy, 2011, 88, 4590-4596.	10.1	162
15	Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 2011, 397, 259-265.	4.3	159
16	Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Letters, 2018, 3, 748-754.	17.4	147
17	Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chemical Engineering Journal, 2014, 244, 137-144.	12.7	144
18	Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chemical Engineering Journal, 2015, 263, 299-308.	12.7	140

#	Article	IF	CITATIONS
19	A sustainable woody biomass biorefinery. Biotechnology Advances, 2012, 30, 785-810.	11.7	137
20	Conversion of biomass-derived ethyl levulinate into Î ³ -valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Advances, 2013, 3, 10277.	3.6	137
21	Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium. Industrial & Engineering Chemistry Research, 2014, 53, 3056-3064.	3.7	137
22	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chemistry, 2016, 18, 1080-1088.	9.0	136
23	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	3.7	128
24	Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass and Bioenergy, 2012, 39, 73-77.	5.7	126
25	Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 2015, 130, 420-428.	10.2	118
26	In situ fabrication of a perfect Pd/ZnO@ZIF-8 core–shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy. Nanoscale, 2015, 7, 7615-7623.	5.6	118
27	Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresource Technology, 2013, 148, 501-507.	9.6	110
28	Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 2017, 99, 1-6.	5.2	109
29	In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone. Journal of Catalysis, 2019, 373, 161-172.	6.2	109
30	Hydrolysis of Cotton Fiber Cellulose in Formic Acid. Energy & Fuels, 2007, 21, 2386-2389.	5.1	108
31	Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	38.1	104
32	Vitamin C-Assisted Synthesized Mn–Co Oxides with Improved Oxygen Vacancy Concentration: Boosting Lattice Oxygen Activity for the Air-Oxidation of 5-(Hydroxymethyl)furfural. ACS Catalysis, 2021, 11, 7828-7844.	11.2	103
33	Perovskite-type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst for the Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catalysis Letters, 2008, 126, 106-111.	2.6	102
34	Efficient Conversion of Glucose into 5-Hydroxymethylfurfural by Chromium(III) Chloride in Inexpensive Ionic Liquid. Industrial & Engineering Chemistry Research, 2012, 51, 1099-1104.	3.7	101
35	Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process. Energy & Fuels, 2012, 26, 4560-4567.	5.1	99
36	Activity and Stability of Perovskite-Type Oxide LaCoO ₃ Catalyst in Lignin Catalytic Wet Oxidation to Aromatic Aldehydes Process. Energy & Fuels, 2009, 23, 19-24.	5.1	96

#	Article	IF	CITATIONS
37	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 2018, 368, 69-78.	6.2	95
38	Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresource Technology, 2010, 101, 3586-3594.	9.6	94
39	Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes. Energy & Fuels, 2010, 24, 4797-4802.	5.1	93
40	Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2). Molecules, 2009, 14, 2747-2757.	3.8	91
41	Reducing Sugar Content in Hemicellulose Hydrolysate by DNS Method: A Revisit. Journal of Biobased Materials and Bioenergy, 2008, 2, 156-161.	0.3	88
42	Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent. Cellulose, 2020, 27, 1301-1314.	4.9	84
43	Dissolution of Microcrystalline Cellulose in Phosphoric Acid—Molecular Changes and Kinetics. Molecules, 2009, 14, 5027-5041.	3.8	82
44	Isolation and characterization of wheat straw lignin with a formic acid process. Bioresource Technology, 2010, 101, 2311-2316.	9.6	82
45	Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Industrial Crops and Products, 2012, 40, 136-144.	5.2	80
46	Highly Selective Oxidation of Methane into Methanol over Cu-Promoted Monomeric Fe/ZSM-5. ACS Catalysis, 2021, 11, 6684-6691.	11.2	73
47	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	10.4	72
48	Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe ₂ O ₃ -Promoted MnO ₂ Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 7812-7822.	6.7	71
49	Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Industrial Crops and Products, 2016, 84, 408-417.	5.2	70
50	An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Industrial Crops and Products, 2018, 112, 18-23.	5.2	69
51	Zeolite-Encapsulated Cu Nanoparticles for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. ACS Catalysis, 2021, 11, 10246-10256.	11.2	69
52	Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renewable and Sustainable Energy Reviews, 2015, 42, 1385-1392.	16.4	64
53	Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnology Advances, 2010, 28, 613-619.	11.7	62
54	Inâ€Situ Generated Catalyst System to Convert Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2015, 7, 1372-1379.	3.7	62

#	Article	IF	CITATIONS
55	Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenols over Raney Ni and Acidic Zeolite Catalysts. Energy & Fuels, 2015, 29, 1662-1668.	5.1	61
56	Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Research International, 2018, 106, 383-393.	6.2	59
57	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts. Catalysis Science and Technology, 2018, 8, 4474-4484.	4.1	58
58	Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chemical Engineering Journal, 2020, 386, 124021.	12.7	58
59	Changes of the surface structure of corn stalk in the cooking process with active oxygen and MgO-based solid alkali as a pretreatment of its biomass conversion. Bioresource Technology, 2012, 103, 432-439.	9.6	57
60	Microalgae for biobutanol production – Technology evaluation and value proposition. Algal Research, 2018, 31, 367-376.	4.6	57
61	Inâ€Situ Catalytic Hydrogenation of Biomassâ€Đerived Methyl Levulinate to γâ€Valerolactone in Methanol. ChemSusChem, 2015, 8, 1601-1607.	6.8	56
62	Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. Journal of Catalysis, 2020, 381, 570-578.	6.2	56
63	New Pd/SiO ₂ @ZIF-8 Core–Shell Catalyst with Selective, Antipoisoning, and Antileaching Properties for the Hydrogenation of Alkenes. Industrial & Engineering Chemistry Research, 2014, 53, 10906-10913.	3.7	55
64	Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts. Renewable Energy, 2020, 147, 916-923.	8.9	54
65	Cu ¹ –Cu ⁰ bicomponent CuNPs@ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 4319-4323.	9.0	52
66	Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydrate Polymers, 2021, 255, 117443.	10.2	52
67	Clean conversion of cellulose into fermentable glucose. Biotechnology Advances, 2009, 27, 625-632.	11.7	48
68	Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate–biodiesel–diesel blends. Energy, 2016, 95, 29-40.	8.8	48
69	Catalytic Transfer Hydrogenolysis/Hydrogenation of Biomass-Derived 5-Formyloxymethylfurfural to 2, 5-Dimethylfuran Over Ni–Cu Bimetallic Catalyst with Formic Acid As a Hydrogen Donor. Industrial & Engineering Chemistry Research, 2019, 58, 5414-5422.	3.7	47
70	Recent Developments in Metal-Based Catalysts for the Catalytic Aerobic Oxidation of 5-Hydroxymethyl-Furfural to 2,5-Furandicarboxylic Acid. Catalysts, 2020, 10, 120.	3.5	47
71	Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydrate Polymers, 2022, 280, 119018.	10.2	47
72	12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid. Biomass and Bioenergy, 2012, 47, 289-294.	5.7	46

#	Article	IF	CITATIONS
73	Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent. Renewable Energy, 2021, 164, 23-33.	8.9	43
74	Inducing Electron Dissipation of Pyridinic N Enabled by Single Ni–N ₄ Sites for the Reduction of Aldehydes/Ketones with Ethanol. ACS Catalysis, 2021, 11, 6398-6405.	11.2	43
75	Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Advances, 2016, 6, 27004-27007.	3.6	42
76	Synthesis of MCMâ€41â€Supported Metal Catalysts in Deep Eutectic Solvent for the Conversion of Carbohydrates into 5â€Hydroxymethylfurfural. ChemSusChem, 2019, 12, 978-982.	6.8	42
77	Development of Betaineâ€Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5â€Hydroxymethylfurfural. ChemSusChem, 2019, 12, 495-502.	6.8	42
78	Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. ChemSusChem, 2021, 14, 1496-1506.	6.8	42
79	Conversion of Biomass-Derived Furfuryl Alcohol into Ethyl Levulinate Catalyzed by Solid Acid in Ethanol. BioResources, 2014, 9, 2634-2644.	1.0	41
80	A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Applied Catalysis B: Environmental, 2019, 258, 117793.	20.2	41
81	Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydrate Polymers, 2020, 244, 116492.	10.2	40
82	Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 718-723.	5.3	38
83	Efficient synthesis of bio-monomer 2,5-furandicarboxylic acid from concentrated 5-hydroxymethylfurfural or fructose in DMSO/H2O mixed solvent. Journal of Industrial and Engineering Chemistry, 2019, 77, 209-214.	5.8	38
84	Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2022, 7, 900-932.	8.7	38
85	Stability of Soluble Dialdehyde Cellulose and the Formation of Hollow Microspheres: Optimization and Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 2151-2159.	6.7	37
86	Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. ACS Catalysis, 2022, 12, 1847-1856.	11.2	37
87	Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides. Molecules, 2010, 15, 7946-7960.	3.8	36
88	Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. ChemSusChem, 2017, 10, 3982-3993.	6.8	36
89	Efficient synthesis of glucose into 5-hydroxymethylfurfural with SO42â^'/ZrO2 modified H+ zeolites in different solvent systems. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 431-438.	5.3	35
90	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 2021, 32, 1186-1190.	9.0	34

#	Article	IF	CITATIONS
91	Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to γ-valerolactone as potential biofuel candidate. Fuel, 2016, 175, 232-239.	6.4	33
92	Oxidative Esterification of 5â€Hydroxymethylfurfural with an Nâ€doped Carbonâ€supported CoCu Bimetallic Catalyst. ChemSusChem, 2020, 13, 4151-4158.	6.8	33
93	Oxidative Decarboxylation of Levulinic Acid by Silver(I)/Persulfate. Molecules, 2011, 16, 2714-2725.	3.8	32
94	Preparation of 5â€(Aminomethyl)â€2â€furanmethanol by direct reductive amination of 5â€Hydroxymethylfurfural with aqueous ammonia over the Ni/SBAâ€15 catalyst. Journal of Chemical Technology and Biotechnology, 2018, 93, 3028-3034.	3.2	32
95	Preparation of Nanocellulose with High-Pressure Homogenization from Pretreated Biomass with Cooking with Active Oxygen and Solid Alkali. ACS Sustainable Chemistry and Engineering, 2019, 7, 9378-9386.	6.7	32
96	Hydrolysis Behavior of Bamboo Fiber in Formic Acid Reaction System. Journal of Agricultural and Food Chemistry, 2010, 58, 2253-2259.	5.2	31
97	Novel Process for the Extraction of Ethyl Levulinate by Toluene with Less Humins from the Ethanolysis Products of Carbohydrates. Energy & Fuels, 2014, 28, 4251-4255.	5.1	31
98	Catalytic hydrogenation and oxidation of biomass-derived levulinic acid. BioResources, 2011, 6, 686-699.	1.0	31
99	Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Nano-Micro Letters, 2022, 14, 84.	27.0	31
100	Aqueousâ€Natural Deep Eutectic Solventâ€Enhanced 5â€Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. ChemSusChem, 2022, 15, .	6.8	30
101	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	5.2	29
102	Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural. Journal of Energy Chemistry, 2018, 27, 209-214.	12.9	28
103	Oxidation of 5-[(Formyloxy)methyl]furfural to Maleic Anhydride with Atmospheric Oxygen Using α-MnO ₂ /Cu(NO ₃) ₂ as Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 7901-7908.	6.7	28
104	Manganese catalyzed transfer hydrogenation of biomass-derived aldehydes: Insights to the catalytic performance and mechanism. Journal of Catalysis, 2020, 389, 157-165.	6.2	28
105	Highly dispersed Co/N-rich carbon nanosheets for the oxidative esterification of biomass-derived alcohols: Insights into the catalytic performance and mechanism. Journal of Catalysis, 2021, 397, 148-155.	6.2	28
106	Conversion of Glucose in CPL‣iCl to 5â€Hydroxymethylfurfural. Chinese Journal of Chemistry, 2010, 28, 1773-1776.	4.9	26
107	Cooking with active oxygen and solid alkali facilitates lignin degradation in bamboo pretreatment. Sustainable Energy and Fuels, 2018, 2, 2206-2214.	4.9	26
108	Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot-water wood extract hydrolyzate as substrate. Biotechnology Advances, 2010, 28, 602-608.	11.7	25

#	Article	IF	CITATIONS
109	Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen. Bioresource Technology, 2012, 123, 49-54.	9.6	25
110	Synthesis, isolation and characterization of methyl levulinate from cellulose catalyzed by extremely low concentration acid. Journal of Energy Chemistry, 2013, 22, 895-901.	12.9	25
111	Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy, 2020, 2, .	6.3	25
112	Stable and Biocompatible Cellulose-Based CaCO ₃ Microspheres for Tunable pH-Responsive Drug Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 19824-19831.	6.7	24
113	An efficient approach to produce 2,5â€diformylfuran from 5â€hydroxymethylfurfural using air as oxidant. Journal of Chemical Technology and Biotechnology, 2019, 94, 3832-3838.	3.2	24
114	The structural changes of the bagasse hemicelluloses during the cooking process involving active oxygen and solid alkali. Carbohydrate Research, 2012, 359, 65-69.	2.3	23
115	Effect of metal salts existence during the acid-catalyzed conversion of glucose in methanol medium. Catalysis Communications, 2015, 59, 10-13.	3.3	23
116	One-pot tandem conversion of fructose into biofuel components with in-situ generated catalyst system. Journal of Energy Chemistry, 2018, 27, 375-380.	12.9	23
117	Facile and Efficient Two-Step Formation of a Renewable Monomer 2,5-Furandicarboxylic Acid from Carbohydrates over the NiO _{<i>x</i>} Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 4895-4904.	3.7	23
118	Structural Characterization of Lignin in the Process of Cooking of Cornstalk with Solid Alkali and Active Oxygen. Journal of Agricultural and Food Chemistry, 2012, 60, 4656-4661.	5.2	22
119	Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate. Applied Energy, 2016, 183, 170-181.	10.1	22
120	Highly Efficient Reductive Etherification of 5â€Hydroxymethylfurfural to 2,5â€Bis(Alkoxymethyl)Furans as Biodiesel Components over Zrâ€5BA Catalyst. Energy Technology, 2019, 7, 1801071.	3.8	22
121	Direct conversion of biomass derived <scp>l</scp> -rhamnose to 5-methylfurfural in water in high yield. Green Chemistry, 2020, 22, 5984-5988.	9.0	22
122	Oneâ€Pot Synthesis of Renewable Phthalic Anhydride from 5â€Hydroxymethfurfural by using MoO ₃ /Cu(NO ₃) ₂ as Catalyst. ChemSusChem, 2020, 13, 640-646.	6.8	21
123	<i>In Situ</i> Encapsulated CuCo@M-SiO ₂ for Higher Alcohol Synthesis from Biomass-Derived Syngas. ACS Sustainable Chemistry and Engineering, 2021, 9, 5910-5923.	6.7	21
124	5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnology for Biofuels, 2017, 10, 168.	6.2	20
125	Synthesis of renewable monomer 2, 5-bishydroxymethylfuran from highly concentrated 5-hydroxymethylfurfural in deep eutectic solvents. Journal of Industrial and Engineering Chemistry, 2020, 81, 93-98.	5.8	20
126	Fractionation and characterization of physicochemical and structural features of corn stalk hemicelluloses from yellow liquor of active oxygen cooking. Industrial Crops and Products, 2013, 44, 542-548.	5.2	19

#	Article	IF	CITATIONS
127	Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and BrÃ,nsted acid sites. Molecular Catalysis, 2021, 506, 111538.	2.0	19
128	Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohydrate Polymers, 2022, 276, 118783.	10.2	19
129	Using a trait-based approach to optimize mixotrophic growth of the red microalga Porphyridium purpureum towards fatty acid production. Biotechnology for Biofuels, 2018, 11, 273.	6.2	18
130	Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali. Korean Journal of Chemical Engineering, 2019, 36, 740-752.	2.7	18
131	Choline chloride-promoted efficient solvent-free hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Ru/C. Green Chemistry, 2021, 23, 1983-1988.	9.0	18
132	The Crossâ€Linking Mechanism and Applications of Catechol–Metal Polymer Materials. Advanced Materials Interfaces, 2021, 8, 2100239.	3.7	18
133	A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor. Cellulose, 2022, 29, 341-354.	4.9	18
134	A durable Ni/La-Y catalyst for efficient hydrogenation of γ-valerolactone into pentanoic biofuels. Journal of Energy Chemistry, 2022, 70, 347-355.	12.9	18
135	Effects of Zr/Ti molar ratio in SO2â^'4/ZrO2-TiO2 calcined at different temperatures on its surface properties and glucose reactivity in near-critical methanol. Journal of Natural Gas Chemistry, 2012, 21, 138-147.	1.8	17
136	Effective production of Î ³ -valerolactone from biomass-derived methyl levulinate over CuO -CaCO3 catalyst. Chinese Journal of Catalysis, 2019, 40, 192-203.	14.0	17
137	Efficient enzymatic hydrolysis of the bagasse pulp prepared with active oxygen and MgO-based solid alkali. Carbohydrate Polymers, 2013, 94, 807-813.	10.2	16
138	Chemical Structure Change of Magnesium Oxide in the Wet Oxidation Delignification Process of Biomass with Solid Alkali. ChemCatChem, 2017, 9, 2544-2549.	3.7	16
139	Comparison of the Physical and Chemical Properties, Performance, and Emissions of Ethyl Levulinate–Biodiesel–Diesel and <i>n</i> -Butanol–Biodiesel–Diesel Blends. Energy & Fuels, 2017, 31 5055-5062.	,5.1	16
140	Assembly of Zr-based coordination polymer over USY zeolite as a highly efficient and robust acid catalyst for one-pot transformation of fructose into 2,5-bis(isopropoxymethyl)furan. Journal of Catalysis, 2020, 389, 87-98.	6.2	16
141	Lignin degradation in cooking with active oxygen and solid Alkali process: A mechanism study. Journal of Cleaner Production, 2021, 278, 123984.	9.3	16
142	Zeolite-encapsulated Cu nanoparticles with enhanced performance for ethanol dehydrogenation. Journal of Catalysis, 2022, 413, 565-574.	6.2	16
143	An effective pathway for 5-brominemethylfurfural synthesis from biomass sugars in deep eutectic solvent. Journal of Chemical Technology and Biotechnology, 2017, 92, 2929-2933.	3.2	15
144	Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2017, 40, 1763-1773.	3.4	15

#	Article	IF	CITATIONS
145	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2695-2695.	6.8	15
146	Boosting the lattice oxygen activity of Fe-catalyst for producing 2,5-diformylfuran from 5-hydroxymethylfurfural. Fuel, 2022, 308, 122069.	6.4	15
147	Boosting the Acid Sites and Lattice Oxygen Activity of the Fe–Cu Catalyst for One-Pot Producing 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2022, 10, 421-430.	6.7	15
148	Tandem thionation of biomass derived levulinic acid with Lawesson's reagent. Green Chemistry, 2016, 18, 2971-2975.	9.0	14
149	Facile fabrication of super-hydrophilic cellulose hydrogel-coated mesh using deep eutectic solvent for efficient gravity-driven oil/water separation. Cellulose, 2021, 28, 949-960.	4.9	14
150	Green Process for 5â€(Chloromethyl)furfural Production from Biomass in Threeâ€Constituent Deep Eutectic Solvent. ChemSusChem, 2021, 14, 847-851.	6.8	14
151	Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. Biotechnology for Biofuels, 2021, 14, 219.	6.2	14
152	Atom-economical synthesis of Î ³ -valerolactone with self-supplied hydrogen from methanol. Chemical Communications, 2015, 51, 16320-16323.	4.1	13
153	Sustainable microalgaeâ€based palm oil mill effluent treatment process with simultaneous biomass production. Canadian Journal of Chemical Engineering, 2016, 94, 1848-1854.	1.7	13
154	Highly selective ring rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethylcyclopentanon catalyzed by non-noble Ni-Fe/Al2O3. Molecular Catalysis, 2021, 505, 111505.	2.0	13
155	Selective Oxidation of Furfural to 2(5H)-Furanone and Maleic Acid over CuMoO ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 13176-13187.	6.7	13
156	Efficient synthesis of 2,5-furandicarboxylic acid from biomass-derived 5-hydroxymethylfurfural in 1,4-dioxane/H2O mixture. Applied Catalysis A: General, 2022, 630, 118463.	4.3	13
157	Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2020, 43, 347-355.	3.4	12
158	Catalytic Conversion of Biomassâ€Đerived 2, 5â€Dimethylfuran into Renewable pâ€Xylene over SAPOâ€34 Catalyst. ChemistrySelect, 2020, 5, 2449-2454.	1.5	12
159	Insights into the catalytic mechanism of 5-hydroxymethfurfural to phthalic anhydride with MoO ₃ /Cu(NO ₃) ₂ in one-pot. Catalysis Science and Technology, 2021, 11, 5656-5662.	4.1	12
160	Drying methods, carrier materials, and length of storage affect the quality of xylooligosaccharides. Food Hydrocolloids, 2019, 94, 439-450.	10.7	11
161	Insight into the Mars-van Krevelen mechanism for production 2,5-diformylfuran over FeNx@C catalyst. Biomass and Bioenergy, 2022, 156, 106320.	5.7	11
162	Insight into the catalytic mechanism of core–shell structured Ni/Ni-N/CN catalyst towards the oxidation of furfural to furancarboxylic acid. Fuel, 2022, 317, 123579.	6.4	11

#	Article	IF	CITATIONS
163	Generation of Methyl Vinyl Ketone from Oxidation of Levulinic Acid Oxidized by Cupric Oxide Complex. Chinese Journal of Chemistry, 2012, 30, 327-332.	4.9	10
164	Preparation of Ethyl Cellulose Composite Film with Down Conversion Luminescence Properties by Doping Perovskite Quantum Dots. ChemistrySelect, 2019, 4, 6516-6523.	1.5	10
165	Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Communications Materials, 2020, 1, .	6.9	10
166	Removal of copper ions by cellulose nanocrystal-based hydrogel and reduced adsorbents for its catalytic properties. Cellulose, 2022, 29, 4525-4537.	4.9	10
167	Hydrogenation of methyl levulinate to γâ€valerolactone over Cu─Mg oxide using MeOH as <i>in situ</i> hydrogen source. Journal of Chemical Technology and Biotechnology, 2019, 94, 167-177.	3.2	9
168	Efficient synthesis of bioâ€based monomer 2,5â€bishydroxymethylfuran by the solventâ€free hydrogenation of 5â€hydroxymethylfurfuralâ€based deep eutectic mixture. Journal of Chemical Technology and Biotechnology, 2020, 95, 1748-1755.	3.2	9
169	Selective oxidation of 5-formyloxymethylfurfural to 2, 5-furandicarboxylic acid with Ru/C in water solution. Korean Journal of Chemical Engineering, 2020, 37, 224-230.	2.7	9
170	Efficient Synthesis of Sugar Alcohols over a Synergistic and Sustainable Catalyst. Chinese Journal of Chemistry, 2021, 39, 2467-2476.	4.9	8
171	An efficient approach to synthesizing 2,5-bis(<i>N</i> -methyl-aminomethyl)furan from 5-hydroxymethylfurfural <i>via</i> 2,5-bis(<i>N</i> -methyl-iminomethyl)furan using a two-step reaction in one pot. Green Chemistry, 2021, 23, 5656-5664.	9.0	8
172	Chemoselective Hydrogenation of Biomass-derived 5-hydroxymethylfurfural into Furanyl Diols. Current Organic Chemistry, 2019, 23, 2155-2167.	1.6	8
173	Acid-Catalyzed Direct Synthesis of Methyl Levulinate from Paper Sludge in Methanol Medium. BioResources, 2013, 8, .	1.0	7
174	Dehydration of Sugar Mixture to HMF and Furfural over SO42-/ZrO2-TiO2 Catalyst. BioResources, 2014, 9, .	1.0	7
175	<i>In-Situ</i> -Prepared Nanocopper-Catalyzed Hydrogenation–Liquefaction of Biomass in a Glycerol–Methanol Solvent for Biofuel Production. Energy & Fuels, 2014, 28, 4273-4281.	5.1	7
176	Effluent of biomass cooking with active oxygen and solid alkali (CAOSA): component separation, recovery and characterization. RSC Advances, 2020, 10, 16481-16489.	3.6	7
177	Ĵ³-Valerolactone—an excellent solvent and a promising building block. , 2020, , 199-226.		7
178	Hydrolysis of bamboo fiber cellulose in formic acid. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3, 480-486.	0.2	6
179	Structural features and thermal characterization of bagasse hemicelluloses obtained from the yellow liquor of active oxygen cooking process. Polymer Degradation and Stability, 2013, 98, 550-556.	5.8	6
180	Biomass pretreatment by cooking with active oxygen and solid alkali (CAOSA): Selectively oxidation of CAOSA wastewater to formic and acetic acids. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 315-320.	5.3	6

#	Article	IF	CITATIONS
181	The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process. Carbohydrate Polymers, 2014, 104, 182-190.	10.2	5
182	Methyl 4-methoxypentanoate: a novel and potential downstream chemical of biomass derived gamma-valerolactone. RSC Advances, 2015, 5, 8297-8300.	3.6	5
183	Efficient supercritical carbon dioxide promoted reductive amination of furfural using water as hydrogen donor over Ni/CaCO3. Journal of Cleaner Production, 2022, 345, 131029.	9.3	5
184	Facile One-Pot Synthesis of Furan Double Schiff Base from 5-Hydroxymethylfurfural via an Amination–Oxidation–Amination Strategy in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 6835-6842.	6.7	5
185	Cellulose Fibrils Extracted from Bamboo Chips as a Reinforcing Material for Prolonged Drug Release. ChemistrySelect, 2020, 5, 9957-9965.	1.5	4
186	Integration of hemicellulose pre-extraction and solid alkali-oxygen cooking processes for lignocellulose fractionation with emphasis on xylan valorization. Korean Journal of Chemical Engineering, 2021, 38, 788-796.	2.7	4
187	Solventâ€Free Hydrogenation of 5â€Hydroxymethylfurfural and Furfural to Furanyl Alcohols and their Selfâ€Condensation Polymers. ChemSusChem, 2022, , .	6.8	4
188	Seasonal changes of soil respiration in Betula platyphylla forest in Changbai Mountain, China. Journal of Forestry Research, 2009, 20, 367-371.	3.6	3
189	Catalytic Conversion of Clucose to Levulinate Ester Derivative in Ethylene Glycol. BioResources, 2015, 10, .	1.0	3
190	Molecular mechanism of arachidonic acid biosynthesis in Porphyridium purpureum promoted by nitrogen limitation. Bioprocess and Biosystems Engineering, 2021, 44, 1491-1499.	3.4	3
191	Green and mild production of 5-aminolevulinic acid from algal biomass. Korean Journal of Chemical Engineering, 2021, 38, 899-905.	2.7	3
192	Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. Molecular Catalysis, 2022, 517, 111986.	2.0	3
193	Solvent-mediated Zr-based coordination polymer with tunable acid properties for the dehydration of fructose and catalytic transfer hydrogenation of 5-hydroxymethylfurfural. Molecular Catalysis, 2022, 524, 112253.	2.0	3
194	Kinetics of Bamboo Fiber Hydrolysis Reaction in Saturated Formic Acid. Key Engineering Materials, 0, 531-532, 679-683.	0.4	2
195	Processing of Microalgae to Biofuels. , 2020, , 111-128.		2
196	Effective Synthesis of a Biodiesel Precursor from Furan Derivatives at Room Temperature with NaHSO ₄ as a Recyclable Catalyst. Energy & Fuels, 2020, 34, 14275-14282.	5.1	2
197	Releasing nitrogen from ammoniated lignin by white rot fungus cometabolizes environmental pollutants. Journal of Environmental Sciences, 2003, 15, 577-82.	6.1	2
198	Active Oxygen Pretreatment of Corn Stalk to Facilitate Biorefining: Structural Elucidation of Hemicelluloses in Yellow Liquor. BioResources, 2015, 10, .	1.0	1

#	Article	IF	CITATIONS
199	One-pot synthesis of high fructose corn syrup directly from starch with SO 4 2â^² /USY solid catalyst. Korean Journal of Chemical Engineering, 2017, 34, 1924-1929.	2.7	1
200	Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-Promoted MnO2. Green Energy and Environment, 2023, 8, 1683-1692.	8.7	1
201	Detoxification of Wheat Straw Hydrolysis in Formic Acid Reaction System by D311 Ion-exchange Resin. , 2010, , .		Ο
202	Catalytic Conversion of Glucose to 5-hydroxymethylfurfural over Aluminum Acetylacetonate in the Two-phase Water-Methylisobutylketone System. , 2010, , .		0
203	Hydrolysis Kinetics of Wheat Straw in Saturated Formic Acid / 4% Hydrochloric Acid Solution. Advanced Materials Research, 2011, 236-238, 138-141.	0.3	Ο
204	Preparation of Pd/Al2O3@silicalite-1 core–shell beads and their application to hydrogenation reactions. Chemical Papers, 2015, 69, .	2.2	0