Mirco Montefiori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11714244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. Plant Cell, 2014, 26, 962-980.	6.6	610
2	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	2.8	178
3	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
4	Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in redâ€fleshed kiwifruit (<i>Actinidia chinensis</i>). Plant Journal, 2011, 65, 106-118.	5.7	164
5	The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany, 2009, 60, 3765-3779.	4.8	132
6	In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. Journal of Experimental Botany, 2015, 66, 1427-1436.	4.8	117
7	Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Scientia Horticulturae, 2009, 119, 377-387.	3.6	87
8	Pigments in the Fruit of Red-Fleshed Kiwifruit (Actinidia chinensisandActinidiadeliciosa). Journal of Agricultural and Food Chemistry, 2005, 53, 9526-9530.	5.2	81
9	An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics, 2013, 14, 28.	2.8	73
10	Characterization and Quantification of Anthocyanins in Red Kiwifruit (Actinidia spp.). Journal of Agricultural and Food Chemistry, 2009, 57, 6856-6861.	5.2	63
11	The control of chlorophyll levels in maturing kiwifruit. Planta, 2012, 236, 1615-1628.	3.2	55
12	Isolation and Structural Identification of the Anthocyanin Components of Red Kiwifruit. Journal of Agricultural and Food Chemistry, 2009, 57, 2035-2039.	5.2	49
13	Carbon starvation reduces carbohydrate and anthocyanin accumulation in redâ€fleshed fruit via trehalose 6â€phosphate and MYB27. Plant, Cell and Environment, 2020, 43, 819-835.	5.7	33
14	Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. Annals of Botany, 2013, 112, 57-68.	2.9	29
15	A novel hairpin library-based approach to identify NBS–LRR genes required for effector-triggered hypersensitive response in Nicotiana benthamiana. Plant Methods, 2017, 13, 32.	4.3	25
16	Leaves are important to obtain consistent red flesh pigmentation in Actinidia chinensis fruit. Scientia Horticulturae, 2015, 197, 496-503.	3.6	16
17	Real-Time PCR and Droplet Digital PCR Are Accurate and Reliable Methods To Quantify <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Biovar 3 in Kiwifruit Infected Plantlets. Plant Disease, 2021, 105, 1748-1757.	1.4	10
18	Effector loss drives adaptation of Pseudomonas syringae pv. actinidiae biovar 3 to Actinidia arguta. PLoS Pathogens, 2022, 18, e1010542.	4.7	9

#	Article	IF	CITATIONS
19	Genetics of Pigment Biosynthesis and Degradation. Compendium of Plant Genomes, 2016, , 149-161.	0.5	6