Alexander Gow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An inducible <scp><i>Cldn11â€CreER</i>^{<i>T2</i>}</scp> mouse line for selective targeting of lymphatic valves. Genesis, 2021, 59, e23439.	1.6	6
2	Empowering Patients with HIPAA Aware Personal Health Libraries. Lecture Notes in Computer Science, 2021, , 112-123.	1.3	1
3	Age-related murine hippocampal CA1 laminae oxidative stress measured in vivo by QUEnch-assiSTed (QUEST) MRI: impact of isoflurane anesthesia. GeroScience, 2020, 42, 563-574.	4.6	10
4	Onecut-dependent Nkx6.2 transcription factor expression is required for proper formation and activity of spinal locomotor circuits. Scientific Reports, 2020, 10, 996.	3.3	9
5	Novel Role for Claudin-11 in the Regulation of Osteoblasts via Modulation of ADAM10-Mediated Notch Signaling. Journal of Bone and Mineral Research, 2019, 34, 1910-1922.	2.8	14
6	Absence of Claudin 11 in CNS Myelin Perturbs Behavior and Neurotransmitter Levels in Mice. Scientific Reports, 2018, 8, 3798.	3.3	27
7	Neuregulin1 modulation of experimental autoimmune encephalomyelitis (EAE). Journal of Neuroimmunology, 2018, 318, 56-64.	2.3	7
8	Corticohippocampal Dysfunction In The OBiden Mouse Model Of Primary Oligodendrogliopathy. Scientific Reports, 2018, 8, 16116.	3.3	3
9	Dimethyl fumarate ameliorates myoclonus stemming from protein misfolding in oligodendrocytes. Journal of Neurochemistry, 2017, 142, 103-117.	3.9	2
10	Developmental window of sensorineural deafness in biotinidaseâ€deficient mice. Journal of Inherited Metabolic Disease, 2017, 40, 733-744.	3.6	5
11	Ranking novel regulatory genes in gene expression profiles using NetExpress. , 2017, 2017, 24-27.		0
12	Overexpression of CHOP in Myelinating Cells Does Not Confer a Significant Phenotype under Normal or Metabolic Stress Conditions. Journal of Neuroscience, 2016, 36, 6803-6819.	3.6	21
13	Claudin-11 Tight Junctions in Myelin Are a Barrier to Diffusion and Lack Strong Adhesive Properties. Biophysical Journal, 2015, 109, 1387-1397.	O.5	36
14	Neuroradiologic correlates of clinical disability and progression in the X-Linked leukodystrophy Pelizaeus–Merzbacher disease. Journal of the Neurological Sciences, 2013, 335, 75-81.	0.6	28
15	Increased anesthesia time using 2,2,2-tribromoethanol–chloral hydrate with low impact on mouse psychoacoustics. Journal of Neuroscience Methods, 2013, 219, 61-69.	2.5	9
16	Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease. Brain Sciences, 2013, 3, 1417-1444.	2.3	11
17	Tissue-Restricted Transcription from a Conserved Intragenic CpG Island in the Klf1 Gene in Mice1. Biology of Reproduction, 2012, 87, 108.	2.7	9
18	MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot–Marie–Tooth disease type 18 Brain, 2012, 135, 2032-2047	7.6	61

Alexander Gow

#	Article	IF	CITATIONS
19	Transgene-Mediated Rescue of Spermatogenesis in Cldn11-Null Mice1. Biology of Reproduction, 2012, 86, 139, 1-11.	2.7	12
20	Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent. Microvascular Research, 2011, 82, 18-27.	2.5	28
21	Auditory testing profiles of Pelizaeus-Merzbacher disease. International Journal of Pediatric Otorhinolaryngology Extra, 2011, 6, 23-29.	0.1	2
22	Using Temporal Genetic Switches to Synchronize the Unfolded Protein Response in Cell Populations In Vivo. Methods in Enzymology, 2011, 491, 143-161.	1.0	5
23	Phenotyping the Claudin 11 Deficiency in Testis: From Histology to Immunohistochemistry. Methods in Molecular Biology, 2011, 763, 223-236.	0.9	11
24	Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. American Journal of Physiology - Cell Physiology, 2010, 299, C736-C749.	4.6	183
25	Claudin Proteins and Neuronal Function. Current Topics in Membranes, 2010, 65, 229-253.	0.9	10
26	Claudin 11 Deficiency in Mice Results in Loss of the Sertoli Cell Epithelial Phenotype in the Testis1. Biology of Reproduction, 2010, 82, 202-213.	2.7	163
27	CHOP and the endoplasmic reticulum stress response in myelinating glia. Current Opinion in Neurobiology, 2009, 19, 505-510.	4.2	61
28	The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nature Neuroscience, 2009, 12, 1398-1406.	14.8	277
29	ArrayQ: Querying Microarray Expressions for Relevant Pathways. , 2009, , .		Ο
30	Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell and Tissue Research, 2008, 333, 427-438.	2.9	36
31	Myelin sheaths are formed with proteins that originated in vertebrate lineages. Neuron Glia Biology, 2008, 4, 137-152.	1.6	24
32	A model of tight junction function in central nervous system myelinated axons. Neuron Glia Biology, 2008, 4, 307-317.	1.6	27
33	Tight junctions potentiate the insulative properties of small CNS myelinated axons. Journal of Cell Biology, 2008, 183, 909-921.	5.2	93
34	Novel alternatively spliced endoplasmic reticulum retention signal in the cytoplasmic loop ofProteolipid Protein-1. Journal of Neuroscience Research, 2007, 85, 471-478.	2.9	6
35	Minimal role for caspase 12 in the unfolded protein response in oligodendrocytes inÂvivo. Journal of Neurochemistry, 2007, 101, 889-897.	3.9	18
36	Minimal role for activating transcription factor 3 in the oligodendrocyte unfolded protein responsein vivo. Journal of Neurochemistry, 2007, 102, 1703-1712.	3.9	15

Alexander Gow

#	Article	IF	CITATIONS
37	Microtubule Deacetylases, SirT2 and HDAC6, in the Nervous System. Neurochemical Research, 2007, 32, 187-195.	3.3	117
38	Quantifying the carrier female phenotype in Pelizaeus-Merzbacher disease. Genetics in Medicine, 2006, 8, 371-378.	2.4	41
39	Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. Journal of Cell Science, 2006, 119, 4819-4827.	2.0	106
40	Myelinogenesis and Axonal Recognition by Oligodendrocytes in Brain Are Uncoupled in Olig1-Null Mice. Journal of Neuroscience, 2005, 25, 1354-1365.	3.6	236
41	CNS Myelin Paranodes Require Nkx6-2 Homeoprotein Transcriptional Activity for Normal Structure. Journal of Neuroscience, 2004, 24, 11215-11225.	3.6	80
42	Deafness in Claudin 11-Null Mice Reveals the Critical Contribution of Basal Cell Tight Junctions to Stria Vascularis Function. Journal of Neuroscience, 2004, 24, 7051-7062.	3.6	225
43	Protein Misfolding as a Disease Determinant. , 2004, , 1009-1036.		4
44	The Claudin 11 Gene. , 2004, , 565-578.		0
45	The COS-7 Cell In Vitro Paradigm to Study Myelin Proteolipid Protein 1 Gene Mutations. , 2003, 217, 263-276.		6
46	The Unfolded Protein Response in Protein Aggregating Diseases. NeuroMolecular Medicine, 2003, 4, 73-94.	3.4	53
47	Alternative promoters and polyadenylation regulate tissue-specific expression ofHemogen isoforms during hematopoiesis and spermatogenesis. Developmental Dynamics, 2003, 228, 606-616.	1.8	18
48	The Unfolded Protein Response Modulates Disease Severity in Pelizaeus-Merzbacher Disease. Neuron, 2002, 36, 585-596.	8.1	246
49	Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microscopy Research and Technique, 2001, 52, 700-708.	2.2	50
50	Functions of OSP/Claudin- 11-Containing Parallel Tight Junctions. , 2001, , .		2
51	The Evolution of Lipophilin Genes from Invertebrates to Tetrapods: DM-20 Cannot Replace Proteolipid Protein in CNS Myelin. Journal of Neuroscience, 2000, 20, 4002-4010.	3.6	95
52	CNS Myelin and Sertoli Cell Tight Junction Strands Are Absent in Osp/Claudin-11 Null Mice. Cell, 1999, 99, 649-659.	28.9	649
53	Disrupted Proteolipid Protein Trafficking Results in Oligodendrocyte Apoptosis in an Animal Model of Pelizaeus-Merzbacher Disease. Journal of Cell Biology, 1998, 140, 925-934.	5.2	216
54	Conservation of Topology, But Not Conformation, of the Proteolipid Proteins of the Myelin Sheath. Journal of Neuroscience, 1997, 17, 181-189.	3.6	70

ALEXANDER GOW

#	Article	IF	CITATIONS
55	Redefining the lipophilin family of proteolipid proteins. , 1997, 50, 659-664.		21
56	An antisense transgenic strategy to inhibit the myelin oligodendrocyte glycoprotein synthesis. Molecular Brain Research, 1996, 43, 333-337.	2.3	5
57	Proteolipid/DM-20 proteins bearing the paralytic tremor mutation in peripheral nerves and transfected Cos-7 cells. Neurochemical Research, 1996, 21, 423-430.	3.3	19
58	A cellular mechanism governing the severity of Pelizaeus–Merzbacher disease. Nature Genetics, 1996, 13, 422-428.	21.4	235
59	Intracellular transport and sorting of the oligodendrocyte transmembrane proteolipid protein. Journal of Neuroscience Research, 1994, 37, 563-573.	2.9	74
60	Many naturally occurring mutations of myelin proteolipid protein impair its intracellular transport. Journal of Neuroscience Research, 1994, 37, 574-583.	2.9	166
61	Intracellular distribution of transgenic bacterial ?-galactosidase in central nervous system neurons and neuroglia. Journal of Neuroscience Research, 1993, 36, 88-98.	2.9	33
62	Preferential ligand binding to multi-state acceptor systems: the unexplored paradox of acceptor self-association that is ligand-mediated but detrimental to ligand binding. Journal of Theoretical Biology, 1990, 145, 407-420.	1.7	4
63	Interactions between bovine myelin basic protein and zwitterionic lysophospholipids. Biochemistry, 1990, 29, 1142-1147.	2.5	16
64	Equilibrium binding of myristoyllysophosphatidylcholine to bovine myelin basic protein: an example of ligand-mediated acceptor association. Biochemistry, 1987, 26, 982-987.	2.5	15
65	Pressure-induced dissociation of aggregates of myelin proteolipid protein. BBA - Proteins and Proteomics, 1985, 828, 383-386.	2.1	5

66 Oligodendrocyte Metabolic Stress in Neurodegeneration. , 0, , .

1