Zhen-Ming Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of waterlogging and salinity increase on CO2 efflux in soil from coastal marshes. Applied Soil Ecology, 2022, 170, 104268.	4.3	9
2	The role of seasonal vegetation properties in determining the wave attenuation capacity of coastal marshes: Implications for building natural defenses. Ecological Engineering, 2022, 175, 106494.	3.6	14
3	Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry. Reviews of Geophysics, 2022, 60, .	23.0	61
4	Image-based machine learning for monitoring the dynamics of the largest salt marsh in the Yangtze River Delta. Journal of Hydrology, 2022, 608, 127681.	5.4	11
5	Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of the Total Environment, 2021, 773, 145684.	8.0	13
6	Coupling Scirpus recruitment with Spartina control guarantees recolonization of native sedges in coastal wetlands. Ecological Engineering, 2021, 166, 106246.	3.6	6
7	Interactions between biotic and abiotic processes determine biogeomorphology in Yangtze Estuary coastal marshes: Observation with a modeling approach. Geomorphology, 2021, 395, 107970.	2.6	5
8	Effects of waterlogging and increased salinity on microbial communities and extracellular enzyme activity in native and exotic marsh vegetation soils. Soil Science Society of America Journal, 2020, 84, 82-98.	2.2	9
9	Salinity Affects Topsoil Organic Carbon Concentrations Through Regulating Vegetation Structure and Productivity. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005217.	3.0	12
10	Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global metaâ€analysis. Global Change Biology, 2020, 26, 1638-1653.	9.5	89
11	Sea-level rise will reduce net CO2 uptake in subtropical coastal marshes. Science of the Total Environment, 2020, 747, 141214.	8.0	5
12	Morphological and reproductive responses of coastal pioneer sedge vegetation to inundation intensity. Estuarine, Coastal and Shelf Science, 2020, 244, 106945.	2.1	6
13	Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal. Agricultural and Forest Meteorology, 2020, 292-293, 108108.	4.8	7
14	Growth Responses of Boreal Scots Pine, Norway Spruce and Silver Birch Seedlings to Simulated Climate Warming over Three Growing Seasons in a Controlled Field Experiment. Forests, 2020, 11, 943.	2.1	10
15	Response of a salt marsh plant to sediment deposition disturbance. Estuarine, Coastal and Shelf Science, 2020, 237, 106695.	2.1	7
16	The impacts of biotic and abiotic interaction on the spatial pattern of salt marshes in the Yangtze Estuary, China. Estuarine, Coastal and Shelf Science, 2020, 238, 106717.	2.1	8
17	The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks. Estuarine, Coastal and Shelf Science, 2020, 239, 106752.	2.1	13
18	The importance of the propagule–sediment–tide "power balance―for revegetation at the coastal frontier. Ecological Applications, 2019, 29, e01967.	3.8	14

ZHEN-MING GE

#	Article	IF	CITATIONS
19	Methane Emissions from Estuarine Coastal Wetlands: Implications for Global Change Effect. Soil Science Society of America Journal, 2019, 83, 1368-1377.	2.2	20
20	Do short-term increases in river and sediment discharge determine the dynamics of coastal mudflat and vegetation in the Yangtze Estuary?. Estuarine, Coastal and Shelf Science, 2019, 220, 176-184.	2.1	18
21	The shaping role of self-organization: linking vegetation patterning, plant traits and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182859.	2.6	34
22	Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise. Scientific Reports, 2018, 8, 2441.	3.3	32
23	Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry, 2018, 137, 163-179.	3.5	36
24	Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia, 2018, 806, 47-65.	2.0	27
25	Elevated salinity and inundation will facilitate the spread of invasive Spartina alterniflora in the Yangtze River Estuary, China. Journal of Experimental Marine Biology and Ecology, 2018, 506, 144-154.	1.5	29
26	Soil carbon and nitrogen storage in recently restored and mature native Scirpus marshes in the Yangtze Estuary, China: Implications for restoration. Ecological Engineering, 2017, 104, 150-157.	3.6	20
27	Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary. Chinese Journal of Oceanology and Limnology, 2017, 35, 833-843.	0.7	12
28	Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1455-1470.	2.8	50
29	Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes. Scientific Reports, 2016, 6, 28466.	3.3	39
30	Socio-economic vulnerability of the megacity of Shanghai (China) to sea-level rise and associated storm surges. Regional Environmental Change, 2016, 16, 1443-1456.	2.9	30
31	Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach. Ecological Modelling, 2016, 321, 110-120.	2.5	17
32	Revegetation of a native species in a newly formed tidal marsh under varying hydrological conditions and planting densities in the Yangtze Estuary. Ecological Engineering, 2015, 83, 354-363.	3.6	26
33	Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: Insights from leaf to ecosystem. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 169-186.	3.0	33
34	Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction, and saltwater intrusion. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1923-1940.	3.0	39
35	Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuarine, Coastal and Shelf Science, 2015, 156, 42-51.	2.1	64
36	Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, southern China. Ocean and Coastal Management, 2015, 109, 1-8.	4.4	22

ZHEN-MING GE

#	Article	IF	CITATIONS
37	Vulnerability assessment of the coastal mangrove ecosystems in Guangxi, China, to sea-level rise. Regional Environmental Change, 2015, 15, 265-275.	2.9	24
38	Spatiotemporal Dynamics of Salt Marsh Vegetation regulated by Plant Invasion and Abiotic Processes in the Yangtze Estuary: Observations with a Modeling Approach. Estuaries and Coasts, 2015, 38, 310-324.	2.2	21
39	Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean and Coastal Management, 2014, 95, 63-71.	4.4	20
40	Effects of salinity on temperature-dependent photosynthetic parameters of a native C ₃ and a non-native C ₄ marsh grass in the Yangtze Estuary, China. Photosynthetica, 2014, 52, 484-492.	1.7	25
41	Evaluation of the combined threat from sea-level rise and sedimentation reduction to the coastal wetlands in the Yangtze Estuary, China. Ecological Engineering, 2014, 71, 346-354.	3.6	35
42	Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 2013, 6, 51-63.	2.4	18
43	Effects of Elevated CO2 and Temperature on Biomass Growth and Allocation in a Boreal Bioenergy Crop (Phalaris arundinacea L.) from Young and Old Cultivations. Bioenergy Research, 2013, 6, 651-662.	3.9	3
44	Adaptive management to climate change for Norway spruce forests along a regional gradient in Finland. Climatic Change, 2013, 118, 275-289.	3.6	13
45	Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Climatic Change, 2013, 118, 259-273.	3.6	23
46	Impacts of elevated temperature and CO ₂ with varying groundwater levels on seasonality of height and biomass growth of a boreal bioenergy crop (<i>Phalaris arundinacea</i>) — a modeling study. Botany, 2013, 91, 260-272.	1.0	4
47	A process-based grid model for the simulation of range expansion of Spartina alterniï¬,ora on the coastal saltmarshes in the Yangtze Estuary. Ecological Engineering, 2013, 58, 105-112.	3.6	31
48	Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass and Bioenergy, 2012, 46, 251-262.	5.7	9
49	Seasonal physiological responses and biomass growth in a bioenergy crop (Phalaris arundinacea L.) under elevated temperature and CO2, subjected to different water regimes in boreal conditions. Bioenergy Research, 2012, 5, 637-648.	3.9	15
50	Multi-objective environment chamber system for studying plant responses to climate change. Photosynthetica, 2012, 50, 24-34.	1.7	15
51	Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, CO ₂ , and soil water regimes. Photosynthetica, 2012, 50, 141-151.	1.7	36
52	Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environmental and Experimental Botany, 2012, 75, 150-158.	4.2	23
53	Evaluation of carbon exchange in a boreal coniferous stand over a 10-year period: An integrated analysis based on ecosystem model simulations and eddy covariance measurements. Agricultural and Forest Meteorology, 2011, 151, 191-203.	4.8	15
54	Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. GCB Bioenergy, 2011, 3, 223-234.	5.6	40

ZHEN-MING GE

#	Article	IF	CITATIONS
55	Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment. Ecological Modelling, 2011, 222, 1626-1638.	2.5	21
56	Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass (Phalaris arundinacea L.) to elevated temperature and CO ₂ under varying water regimes. Photosynthetica, 2011, 49, 172-184.	1.7	30
57	Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Annals of Forest Science, 2011, 68, 371-383.	2.0	13
58	Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Tree Physiology, 2011, 31, 323-338.	3.1	35
59	Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in Southern Finland. Ecological Modelling, 2010, 221, 1731-1743.	2.5	28
60	Carrying capacity for shorebirds during migratory seasons at the Jiuduansha Wetland, Yangtze River Estuary, China. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2008, 3, 536-542.	0.2	1
61	Changes in the spatial distribution of migratory shorebirds along the Shanghai shoreline, China, between 1984 and 2004. Emu, 2007, 107, 19-27.	0.6	7
62	Seasonal change and habitat selection of shorebird community at the South Yangtze River Mouth and North Hangzhou Bay, China. Acta Ecologica Sinica, 2006, 26, 40-47.	1.9	12
63	Use of wetlands at the mouth of the Yangtze River by shorebirds during spring and fall migration. Journal of Field Ornithology, 2006, 77, 347-356.	0.5	4