List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11712133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CIMT 2021: report on the 18th Annual Meeting of the Association for Cancer Immunotherapy. Human Vaccines and Immunotherapeutics, 2022, , 1-10.	3.3	0
2	An Fc-inert PD-L1×4-1BB bispecific antibody mediates potent anti-tumor immunity in mice by combining checkpoint inhibition and conditional 4-1BB co-stimulation. Oncolmmunology, 2022, 11, 2030135.	4.6	9
3	pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122310119.	7.1	16
4	Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunology, Immunotherapy, 2022, 71, 1975-1988.	4.2	11
5	Preclinical Characterization and Phase I Trial Results of a Bispecific Antibody Targeting PD-L1 and 4-1BB (GEN1046) in Patients with Advanced Refractory Solid Tumors. Cancer Discovery, 2022, 12, 1248-1265.	9.4	36
6	A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science, 2021, 371, 145-153.	12.6	253
7	PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Frontiers in Immunology, 2021, 12, 641703.	4.8	21
8	lodine-124 PET quantification of organ-specific delivery and expression of NIS-encoding RNA. EJNMMI Research, 2021, 11, 14.	2.5	3
9	Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano, 2021, 15, 15191-15209.	14.6	32
10	Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Science Translational Medicine, 2021, 13, eabc7804.	12.4	79
11	CRISPR/Cas9-mediated TGFβRII disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells in vitro. Journal of Translational Medicine, 2021, 19, 482.	4.4	14
12	CIMT 2019: report on the 17th Annual Meeting of the Association for Cancer Immunotherapy. Human Vaccines and Immunotherapeutics, 2020, 16, 808-815.	3.3	2
13	An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science, 2020, 367, 446-453.	12.6	286
14	A liposomal RNA vaccine inducing neoantigen-specific CD4 ⁺ T cells augments the antitumor activity of local radiotherapy in mice. Oncolmmunology, 2020, 9, 1771925.	4.6	32
15	An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature, 2020, 585, 107-112.	27.8	526
16	Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020). Small, 2020, 16, 2070100.	10.0	2
17	Dexamethasone premedication suppresses vaccine-induced immune responses against cancer. Oncolmmunology, 2020, 9, 1758004.	4.6	17
18	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	10.0	95

#	Article	IF	CITATIONS
19	Personalized Neo-Epitope Vaccines for Cancer Treatment. Recent Results in Cancer Research, 2020, 214, 153-167.	1.8	9
20	HPV16 RNA-LPX vaccine mediates complete regression of aggressively growing HPV-positive mouse tumors and establishes protective T cell memory. Oncolmmunology, 2019, 8, e1629259.	4.6	58
21	Intravenous delivery of the toll-like receptor 7 agonist SC1 confers tumor control by inducing a CD8+ T cell response. Oncolmmunology, 2019, 8, e1601480.	4.6	18
22	A non-functional neoepitope specific CD8 ⁺ T-cell response induced by tumor derived antigen exposure <i>in vivo</i> . Oncolmmunology, 2019, 8, 1553478.	4.6	16
23	Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 2019, 27, 824-836.	8.2	191
24	Nanomedicine and macroscale materials in immuno-oncology. Chemical Society Reviews, 2019, 48, 351-381.	38.1	118
25	Protein corona–mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses. Journal of Allergy and Clinical Immunology, 2018, 142, 1558-1570.	2.9	60
26	Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncolmmunology, 2018, 7, e1409929.	4.6	26
27	Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biology, 2018, 66, 34-49.	3.6	22
28	In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET. EJNMMI Research, 2018, 8, 80.	2.5	28
29	Monitoring Translation Activity of mRNA-Loaded Nanoparticles in Mice. Molecular Pharmaceutics, 2018, 15, 3909-3919.	4.6	27
30	CIMT 2018: Pushing frontiers in cancer immunotherapy — Report on the 16th Annual Meeting of the Association for Cancer Immunotherapy. Human Vaccines and Immunotherapeutics, 2018, 14, 2864-2873.	3.3	1
31	Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: Addressing the Mutanome. Methods in Molecular Biology, 2017, 1499, 223-236.	0.9	9
32	SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. Journal of Controlled Release, 2017, 248, 10-23.	9.9	51
33	Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547, 222-226.	27.8	1,806
34	mRNA: A Versatile Molecule for Cancer Vaccines. Current Issues in Molecular Biology, 2017, 22, 113-128.	2.4	36
35	RNA Vaccination Therapy: Advances in an Emerging Field. Journal of Immunology Research, 2016, 2016, 1-2.	2.2	6
36	Reductive Decationizable Block Copolymers for Stimuli-Responsive mRNA Delivery. Macromolecular Rapid Communications, 2016, 37, 924-933.	3.9	36

#	Article	IF	CITATIONS
37	FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines. Methods in Molecular Biology, 2016, 1428, 163-175.	0.9	9
38	Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clinical Cancer Research, 2016, 22, 1885-1896.	7.0	128
39	Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine, 2016, 11, 2723-2734.	3.3	82
40	Vaccination with trifunctional nanoparticles that address CD8+dendritic cells inhibits growth of established melanoma. Nanomedicine, 2016, 11, 2647-2662.	3.3	19
41	Harnessing the potential of noninvasive <i>in vivo</i> preclinical imaging of the immune system: challenges and prospects. Nanomedicine, 2016, 11, 2711-2722.	3.3	6
42	Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunology, Immunotherapy, 2016, 65, 1075-1083.	4.2	59
43	Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534, 396-401.	27.8	1,243
44	Mutanome directed cancer immunotherapy. Current Opinion in Immunology, 2016, 39, 14-22.	5.5	55
45	Abstract CT032: A first-in-human phase I/II clinical trial assessing novel mRNA-lipoplex nanoparticles for potent cancer immunotherapy in patients with malignant melanoma. Cancer Research, 2016, 76, CT032-CT032.	0.9	4
46	Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipidâ€ l ike nanoparticles resolves liver fibrosis. Hepatology, 2015, 62, 1285-1297.	7.3	101
47	Current Developments in Actively Personalized Cancer Vaccination with a Focus on RNA as the Drug Format. Progress in Tumor Research, 2015, 42, 44-54.	0.1	6
48	Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials, 2015, 49, 125-134.	11.4	53
49	Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520, 692-696.	27.8	1,030
50	Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics, 2014, 15, 190.	2.8	334
51	Mutated tumor alleles are expressed according to their DNA frequency. Scientific Reports, 2014, 4, 4743.	3.3	40
52	Antitumor Vaccination with Synthetic mRNA: Strategies for In Vitro and In Vivo Preclinical Studies. Methods in Molecular Biology, 2013, 969, 235-246.	0.9	17
53	mTOR Inhibition Improves Antitumor Effects of Vaccination with Antigen-Encoding RNA. Cancer Immunology Research, 2013, 1, 386-392.	3.4	37
54	Confidence-based Somatic Mutation Evaluation and Prioritization. PLoS Computational Biology, 2012, 8, e1002714.	3.2	30

#	Article	IF	CITATIONS
55	Exploiting the Mutanome for Tumor Vaccination. Cancer Research, 2012, 72, 1081-1091.	0.9	706
56	HLA typing from RNA-Seq sequence reads. Genome Medicine, 2012, 4, 102.	8.2	204
57	FLT3 Ligand Enhances the Cancer Therapeutic Potency of Naked RNA Vaccines. Cancer Research, 2011, 71, 6132-6142.	0.9	70
58	Tumor vaccination using messenger RNA: prospects of a future therapy. Current Opinion in Immunology, 2011, 23, 399-406.	5.5	114
59	Determinants of intracellular RNA pharmacokinetics: Implications for RNA-based immunotherapeutics. RNA Biology, 2011, 8, 35-43.	3.1	32
60	Intranodal Vaccination with Naked Antigen-Encoding RNA Elicits Potent Prophylactic and Therapeutic Antitumoral Immunity. Cancer Research, 2010, 70, 9031-9040.	0.9	253
61	Increased Antigen Presentation Efficiency by Coupling Antigens to MHC Class I Trafficking Signals. Journal of Immunology, 2008, 180, 309-318.	0.8	141