
Xiaofeng Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1171199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 2017, 9, 480-486.	6.6	254
2	Synthesis of Cellulose- <i>graft</i> -Poly(<i>N</i> , <i>N</i> -dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules, 2008, 9, 2615-2620.	2.6	191
3	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 17155-17162.	4.0	124
4	CO ₂ -Responsive Cellulose Nanofibers Aerogels for Switchable Oil–Water Separation. ACS Applied Materials & Interfaces, 2019, 11, 9367-9373.	4.0	123
5	Redox active gels: synthesis, structures and applications. Journal of Materials Chemistry B, 2013, 1, 1658.	2.9	112
6	Cellulose-Based Dual Graft Molecular Brushes as Potential Drug Nanocarriers: Stimulus-Responsive Micelles, Self-Assembled Phase Transition Behavior, and Tunable Crystalline Morphologies. Biomacromolecules, 2009, 10, 2033-2042.	2.6	105
7	Redox-Active Cross-Linkable Poly(ionic liquid)s. Journal of the American Chemical Society, 2012, 134, 4023-4025.	6.6	105
8	A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers, 2020, 233, 115859.	5.1	96
9	Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Applied Surface Science, 2018, 435, 1337-1343.	3.1	92
10	Cellulose-rich oleogels prepared with an emulsion-templated approach. Food Hydrocolloids, 2018, 77, 460-464.	5.6	92
11	Probing the Collapse Dynamics of Poly(<i>N</i> â€isopropylacrylamide) Brushes by AFM: Effects of Coâ€nonsolvency and Grafting Densities. Small, 2011, 7, 1440-1447.	5.2	90
12	Breathing Pores on Command: Redoxâ€Responsive Spongy Membranes from Poly(ferrocenylsilane)s. Angewandte Chemie - International Edition, 2014, 53, 13789-13793.	7.2	90
13	Selfâ€Healing Polysaccharide Hydrogel Based on Dynamic Covalent Enamine Bonds. Macromolecular Materials and Engineering, 2016, 301, 725-732.	1.7	90
14	Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chemical Engineering Journal, 2018, 338, 1-7.	6.6	87
15	Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydrate Polymers, 2017, 176, 299-306.	5.1	86
16	High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chemical Engineering Journal, 2019, 361, 897-907.	6.6	86
17	Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chemical Engineering Journal, 2019, 366, 531-538.	6.6	82
18	Synthesis, characterization, and controllable drug release of pH-sensitive hybrid magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321, 2799-2804.	1.0	81

#	Article	IF	CITATIONS
19	Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polymer Degradation and Stability, 2016, 128, 22-28.	2.7	77
20	Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydrate Polymers, 2019, 211, 173-180.	5.1	76
21	Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydrate Polymers, 2020, 237, 116133.	5.1	74
22	Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polymer Chemistry, 2013, 4, 337-342.	1.9	65
23	Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydrate Polymers, 2018, 179, 86-92.	5.1	65
24	Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management. Chemical Engineering Journal, 2020, 385, 123958.	6.6	65
25	Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. Journal of Materials Chemistry, 2010, 20, 4981.	6.7	63
26	Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. International Journal of Biological Macromolecules, 2019, 137, 197-204.	3.6	63
27	Polysaccharide-based edible emulsion gel stabilized by regenerated cellulose. Food Hydrocolloids, 2019, 91, 232-237.	5.6	63
28	Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method. European Polymer Journal, 2019, 110, 378-384.	2.6	63
29	Multifaceted applications of cellulosic porous materials in environment, energy, and health. Progress in Polymer Science, 2020, 106, 101253.	11.8	63
30	Enzymatic degradation of PLA/cellulose nanocrystal composites. Industrial Crops and Products, 2019, 141, 111799.	2.5	62
31	A Nature-Inspired Monolithic Integrated Cellulose Aerogel-Based Evaporator for Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2021, 13, 10612-10622.	4.0	61
32	Surfaceâ€Grafted Gelâ€Brush/Metal Nanoparticle Hybrids. Advanced Functional Materials, 2010, 20, 939-944.	7.8	60
33	Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surface and Coatings Technology, 2017, 309, 149-154.	2.2	60
34	Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant. Carbohydrate Polymers, 2019, 213, 184-191.	5.1	60
35	Cellulose nanofibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach. Cellulose, 2017, 24, 3313-3322.	2.4	59
36	Chitosan-bound carboxymethylated cotton fabric and its application as wound dressing. Carbohydrate Polymers, 2019, 221, 202-208.	5.1	59

#	Article	IF	CITATIONS
37	Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chemical Engineering Journal, 2020, 402, 126222.	6.6	59
38	Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose, 2018, 25, 559-571.	2.4	58
39	Flexible and Robust Bacterial Celluloseâ€Based Ionogels with High Thermoelectric Properties for Lowâ€Grade Heat Harvesting. Advanced Functional Materials, 2022, 32, 2107105.	7.8	57
40	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	2.4	55
41	Preparation of a Rapidly Forming Poly(ferrocenylsilane)â€Poly(ethylene glycol)â€based Hydrogel by a Thiolâ€Michael Addition Click Reaction. Macromolecular Rapid Communications, 2010, 31, 2059-2063.	2.0	54
42	Probing the Thermal Collapse of Poly(<i>N</i> -isopropylacrylamide) Grafts by Quantitative <i>in Situ</i> Ellipsometry. Journal of Physical Chemistry B, 2012, 116, 9261-9268.	1.2	54
43	Electrografting of Stimuli-Responsive, Redox Active Organometallic Polymers to Gold from Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 7865-7868.	6.6	54
44	Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose, 2018, 25, 573-582.	2.4	53
45	Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion. Journal of Materials Science, 2020, 55, 7731-7742.	1.7	51
46	Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. Journal of Materials Chemistry B, 2018, 6, 634-640.	2.9	50
47	Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicology and Environmental Safety, 2019, 168, 35-44.	2.9	50
48	Electrospinning of Celluloseâ€Based Fibers From NaOH/Urea Aqueous System. Macromolecular Materials and Engineering, 2010, 295, 695-700.	1.7	49
49	Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polymer Chemistry, 2011, 2, 879.	1.9	49
50	<i>In Vitro</i> Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin. Journal of Agricultural and Food Chemistry, 2018, 66, 12344-12352.	2.4	48
51	A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene glycol for electric-thermal energy conversion and storage. Chemical Engineering Journal, 2020, 400, 125950.	6.6	48
52	Fabrication of Z-scheme photocatalyst Ag–AgBr@Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide. Journal of Molecular Catalysis A, 2015, 406, 194-203.	4.8	47
53	Effect of Counterion Choice on the Stability of Cellulose Nanocrystal Pickering Emulsions. Industrial & Engineering Chemistry Research, 2018, 57, 7169-7180.	1.8	47
54	Construction of up-converting fluorescent carbon quantum dots/Bi20TiO32 composites with enhanced photocatalytic properties under visible light. Chemical Engineering Journal, 2017, 310, 79-90.	6.6	45

#	Article	IF	CITATIONS
55	Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices. Energy Conversion and Management, 2020, 223, 113478.	4.4	45
56	Highly Swellable, Dualâ€Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromolecular Rapid Communications, 2016, 37, 1939-1944.	2.0	43
57	Thiol–ene click reaction on cellulose sponge and its application for oil/water separation. RSC Advances, 2017, 7, 20147-20151.	1.7	43
58	Collapse from the top: brushes of poly(N-isopropylacrylamide) in co-nonsolvent mixtures. Soft Matter, 2014, 10, 3134.	1.2	42
59	Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity. International Journal of Biological Macromolecules, 2020, 148, 627-634.	3.6	42
60	Acetone/Water Cosolvent Approach to Lignin Nanoparticles with Controllable Size and Their Applications for Pickering Emulsions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5470-5480.	3.2	40
61	Robust formation of biodegradable polymersomes by direct hydration. Polymer Chemistry, 2015, 6, 691-696.	1.9	39
62	Facile Fabrication of Robust and Stretchable Cellulose Nanofibers/Polyurethane Hybrid Aerogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 8977-8985.	3.2	39
63	Synthesis, characterization, and thermal properties of dendrimer-star, block-comb copolymers by ring-opening polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 6575-6586.	2.5	38
64	Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions. Cellulose, 2018, 25, 3025-3035.	2.4	38
65	PAN supported Ag-AgBr@Bi20TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability. Separation and Purification Technology, 2017, 176, 277-286.	3.9	37
66	Electrochemical sensing by surface-immobilized poly(ferrocenylsilane) grafts. Journal of Materials Chemistry, 2012, 22, 11261.	6.7	35
67	Copper-loaded nanocellulose sponge as a sustainable catalyst for regioselective hydroboration of alkynes. Carbohydrate Polymers, 2018, 191, 17-24.	5.1	35
68	A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydrate Polymers, 2018, 200, 595-601.	5.1	35
69	Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydrate Polymers, 2021, 273, 118600.	5.1	35
70	Smart cotton fabric screen-printed with viologen polymer: photochromic, thermochromic and ammonia sensing. Cellulose, 2020, 27, 2939-2952.	2.4	34
71	Covalent Layer-by-Layer Assembly of Redox-Active Polymer Multilayers. Langmuir, 2013, 29, 7257-7265.	1.6	33
72	High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 2019, 74, 59-68.	1.4	33

#	Article	IF	CITATIONS
73	Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydrate Polymers, 2017, 170, 117-123.	5.1	32
74	Fabrication of Thermoresponsive Polymer-Functionalized Cellulose Sponges: Flexible Porous Materials for Stimuli-Responsive Catalytic Systems. ACS Applied Materials & Interfaces, 2018, 10, 27831-27839.	4.0	32
75	An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor. Polymer Chemistry, 2020, 11, 1327-1336.	1.9	32
76	The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. International Journal of Biological Macromolecules, 2020, 155, 1578-1588.	3.6	32
77	Sponges with Janus Character from Nanocellulose: Preparation and Applications in the Treatment of Hemorrhagic Wounds. Advanced Healthcare Materials, 2020, 9, e1901796.	3.9	32
78	High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion. Solar Energy Materials and Solar Cells, 2021, 222, 110924.	3.0	32
79	Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver. International Journal of Biological Macromolecules, 2020, 144, 624-631.	3.6	31
80	Cellulose nanocrystals-composited poly (methyl methacrylate) encapsulated n-eicosane via a Pickering emulsion-templating approach for energy storage. Carbohydrate Polymers, 2020, 234, 115934.	5.1	31
81	Facile fabrication of carboxymethyl chitosan/paraffin coated carboxymethylated cotton fabric with asymmetric wettability for hemostatic wound dressing. Cellulose, 2020, 27, 3443-3453.	2.4	30
82	Nanostructured Polymer Brushes by UVâ€Assisted Imprint Lithography and Surfaceâ€Initiated Polymerization for Biological Functions. Advanced Functional Materials, 2011, 21, 2088-2095.	7.8	29
83	Redox-responsive organometallic microgel particles prepared from poly(ferrocenylsilane)s generated using microfluidics. Chemical Communications, 2014, 50, 3058-3060.	2.2	29
84	Transforming commercial regenerated cellulose yarns into multifunctional wearable electronic textiles. Journal of Materials Chemistry C, 2020, 8, 1309-1318.	2.7	29
85	High-Temperature Auto-Cross-Linking Cyclotriphosphaznene: Synthesis and Application in Flame Retardance and Antidripping Poly(ethylene terephthalate). Industrial & Engineering Chemistry Research, 2015, 54, 3788-3799.	1.8	28
86	Multi-responsive, self-healing and adhesive PVA based hydrogels induced by the ultrafast complexation of Fe ³⁺ ions. Soft Matter, 2019, 15, 7404-7411.	1.2	27
87	Preparation of Cellulose Nanofibers/Nanoparticles via Electrospray. Chemistry Letters, 2008, 37, 114-115.	0.7	26
88	Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydrate Polymers, 2019, 207, 755-763.	5.1	26
89	Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management. International Journal of Biological Macromolecules, 2020, 146, 1-8.	3.6	26
90	Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Composites Part B: Engineering, 2022, 235, 109762.	5.9	26

#	Article	IF	CITATIONS
91	Stability and Cell Adhesion Properties of Poly(N-isopropylacrylamide) Brushes with Variable Grafting Densities. Australian Journal of Chemistry, 2011, 64, 1261.	0.5	25
92	Construction of CQDs-Bi 20 TiO 32 /PAN electrospun fiber membranes and their photocatalytic activity for isoproturon degradation under visible light. Materials Research Bulletin, 2017, 94, 7-14.	2.7	25
93	Tailoring the droplet size of Pickering emulsions by PISA synthesized polymeric nanoparticles. Polymer, 2020, 206, 122853.	1.8	25
94	Rheology of regenerated cellulose suspension and influence of sodium alginate. International Journal of Biological Macromolecules, 2020, 148, 811-816.	3.6	25
95	Thin film hydrogels from redox responsive poly(ferrocenylsilanes): Preparation, properties, and applications in electrocatalysis. European Polymer Journal, 2015, 72, 535-542.	2.6	24
96	Regenerated cellulose-dispersed polystyrene composites enabled via Pickering emulsion polymerization. Carbohydrate Polymers, 2019, 223, 115079.	5.1	24
97	Novel organic-inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti-dripping of PET. European Polymer Journal, 2019, 120, 109270.	2.6	24
98	Construction of a metallic silver nanoparticle-decorated bismuth oxybromide-based composite material as a readily recyclable photocatalyst. Journal of Cleaner Production, 2020, 246, 119007.	4.6	24
99	Biginelli reaction on cellulose acetoacetate: a new approach for versatile cellulose derivatives. Carbohydrate Polymers, 2019, 209, 223-229.	5.1	23
100	Enamine Approach for Versatile and Reversible Functionalization on Cellulose Related Porous Sponges. ACS Sustainable Chemistry and Engineering, 2018, 6, 9028-9036.	3.2	22
101	Biphasic organohydrogels based on phase change materials with excellent thermostability for thermal management applications. Chemical Engineering Journal, 2021, 416, 129181.	6.6	22
102	Preparation and characterization of carboxymethylated cotton fabrics as hemostatic wound dressing. International Journal of Biological Macromolecules, 2020, 160, 18-25.	3.6	22
103	Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance. ACS Applied Materials & Interfaces, 2022, 14, 34049-34058.	4.0	22
104	Preparation of upconversion Yb3+ doped microspherical BiOI with promoted photocatalytic performance. Solid State Sciences, 2018, 75, 45-52.	1.5	21
105	Bio-based polymer colorants from nonaqueous reactive dyeing of regenerated cellulose for plastics and textiles. Carbohydrate Polymers, 2019, 206, 734-741.	5.1	21
106	Highly Efficient Oxidative Desulfurization Catalyzed by a Polyoxometalate/Carbonized Cellulose Nanofiber Composite. Energy & Fuels, 2020, 34, 778-786.	2.5	21
107	Fabrication of lignin/poly(3-hydroxybutyrate) nanocomposites with enhanced properties via a Pickering emulsion approach. International Journal of Biological Macromolecules, 2020, 165, 3078-3087.	3.6	21
108	Poly(lactic acid)/carbon nanotube composites with enhanced electrical conductivity via a two-step dispersion strategy. Composites Communications, 2022, 30, 101087.	3.3	21

#	Article	IF	CITATIONS
109	Functionalization of cotton fabric with bismuth oxyiodide nanosheets: applications for photodegrading organic pollutants, UV shielding and self-cleaning. Cellulose, 2019, 26, 2873-2884.	2.4	20
110	A novel low add-on technology of dyeing cotton fabric with reactive dyestuff. Textile Reseach Journal, 2018, 88, 1345-1355.	1.1	18
111	A waterborne bio-based polymer pigment: colored regenerated cellulose suspension from waste cotton fabrics. Cellulose, 2018, 25, 7369-7379.	2.4	18
112	Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polymers for Advanced Technologies, 2020, 31, 1194-1207.	1.6	18
113	Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin. LWT - Food Science and Technology, 2021, 146, 111483.	2.5	18
114	Dual-functional phase change composite based on copper plated cellulose aerogel. Composites Science and Technology, 2022, 227, 109615.	3.8	18
115	The combâ€like modified styreneâ€maleic anhydride copolymer dispersant for disperse dyes. Journal of Applied Polymer Science, 2019, 136, 47330.	1.3	17
116	Synthetic semicrystalline cellulose oligomers as efficient Pickering emulsion stabilizers. Carbohydrate Polymers, 2021, 254, 117445.	5.1	17
117	A recyclable 3D g-C3N4 based nanocellulose aerogel composite for photodegradation of organic pollutants. Cellulose, 2021, 28, 3531-3547.	2.4	17
118	Mussel-inspired adhesive gelatin–polyacrylamide hydrogel wound dressing loaded with tetracycline hydrochloride to enhance complete skin regeneration. Soft Matter, 2022, 18, 662-674.	1.2	17
119	Cellulosic-Based Conductive Hydrogels for Electro-Active Tissues: A Review Summary. Gels, 2022, 8, 140.	2.1	17
120	Lignin Nanoparticles as Highly Efficient, Recyclable Emulsifiers for Enhanced Oil Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 9334-9344.	3.2	17
121	The flameâ€retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (paraâ€ellyloxyphenoxy) cyclotriphosphazene systems. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
122	Temperature-responsive cellulose sponge with switchable pore size: Application as a water flow manipulator. Materials Letters, 2018, 210, 337-340.	1.3	16
123	Antibacterial thyme oil-loaded organo-hydrogels utilizing cellulose acetoacetate as reactive polymer emulsifier. International Journal of Biological Macromolecules, 2020, 147, 18-23.	3.6	16
124	Highly Stable and Nonflammable Hydrated Salt-Paraffin Shape-Memory Gels for Sustainable Building Technology. ACS Sustainable Chemistry and Engineering, 2021, 9, 15442-15450.	3.2	16
125	Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET. Polymer Degradation and Stability, 2018, 154, 239-247.	2.7	15
126	Self-healing and acidochromic polyvinyl alcohol hydrogel reinforced by regenerated cellulose. Carbohydrate Polymers, 2021, 255, 117331.	5.1	15

#	Article	IF	CITATIONS
127	A heterogeneous binary solvent system for recyclable reactive dyeing of cotton fabrics. Cellulose, 2018, 25, 7381-7392.	2.4	14
128	Grafting of PEG onto lanthanum hydroxide nanowires. Materials Letters, 2008, 62, 4078-4080.	1.3	13
129	Synergistic effects of a novel siliconâ€containing triazine charring agent on the flameâ€retardant properties of poly(ethylene terephthalate)/hexakis (4â€phenoxy)cyclotriphosphazene composites. Polymer Composites, 2018, 39, 858-868.	2.3	13
130	Precipitated silica agglomerates reinforced with cellulose nanofibrils as adsorbents for heavy metals. RSC Advances, 2018, 8, 33129-33137.	1.7	13
131	Flameâ€retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire. Polymers for Advanced Technologies, 2020, 31, 795-806.	1.6	13
132	Aggregation behaviors of thermo-responsive methylcellulose in water: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 2020, 97, 107554.	1.3	13
133	g-C3N4 nanosheets exfoliated by green wet ball milling process for photodegradation of organic pollutants. Chemical Physics Letters, 2021, 766, 138335.	1.2	13
134	Rheology of PLA/regenerated cellulose nanocomposites prepared by the pickering emulsion process: Network formation and modeling. Materials and Design, 2021, 206, 109774.	3.3	13
135	Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach. Journal of Materials Science and Technology, 2022, 101, 146-154.	5.6	13
136	Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polymer Degradation and Stability, 2022, 196, 109815.	2.7	13
137	Stimuliâ€Responsive Pickering Emulsions Regulated via Polymerizationâ€Induced Selfâ€Assembly Nanoparticles. Macromolecular Rapid Communications, 2022, 43, e2200010.	2.0	13
138	Sag control of waterborne acrylic latex with regenerated nanocellulose suspension. Progress in Organic Coatings, 2018, 123, 146-152.	1.9	12
139	Calcium functioned carboxymethylated cotton fabric for hemostatic wound dressing. Cellulose, 2020, 27, 10139-10149.	2.4	12
140	Durable and Effective Antibacterial Cotton Fabric Collaborated with Polypropylene Tissue Mesh for Abdominal Wall Defect Repair. ACS Biomaterials Science and Engineering, 2020, 6, 3868-3877.	2.6	12
141	Enzymatic graft polymerization from cellulose acetoacetate: a versatile strategy for cellulose functionalization. Cellulose, 2021, 28, 691-701.	2.4	12
142	Effect of Solvophilic Chain Length in <scp>PISA</scp> Particles on Pickering Emulsion ^{â€} . Chinese Journal of Chemistry, 2021, 39, 3448-3454.	2.6	12
143	Fabrication of novel rGO/Bi20TiO32 heterojunction for enhanced visible-light photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 18-25.	2.0	11
144	Injectable and self-healing hydrogel as a stem cells carrier for treatment of diabetic erectile dysfunction. Materials Science and Engineering C, 2020, 116, 111214.	3.8	11

#	Article	IF	CITATIONS
145	Robust Fabrication of Fluorescent Cellulosic Materials via Hantzsch Reaction. Macromolecular Rapid Communications, 2021, 42, 2000496.	2.0	11
146	Regenerated chitin reinforced polyhydroxybutyrate composites via Pickering emulsion template with improved rheological, thermal, and mechanical properties. Composites Communications, 2021, 25, 100655.	3.3	11
147	High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid. Carbohydrate Polymers, 2022, 277, 118878.	5.1	11
148	Musselâ€inspired chitosanâ€based hydrogel sensor with <scp>pH</scp> â€responsive and adjustable adhesion, toughness and selfâ€healing capability. Polymers for Advanced Technologies, 2022, 33, 1867-1880.	1.6	11
149	Controlled Surface Initiated Polymerization of <i>N</i> â€Isopropylacrylamide from Polycaprolactone Substrates for Regulating Cell Attachment and Detachment. Israel Journal of Chemistry, 2012, 52, 339-346.	1.0	10
150	Enhancing electrical conductivity and electrical stability of polypyrroleâ€coated cotton fabrics via surface microdissolution. Journal of Applied Polymer Science, 2019, 136, 47515.	1.3	10
151	Antibacterial thyme oil-loaded zwitterionic emulsion hydrogels. Journal of Materials Chemistry B, 2022, 10, 2691-2698.	2.9	10
152	Quantitative analysis of factors determining the enzymatic degradation of poly(lactic acid). International Journal of Biological Macromolecules, 2022, 209, 1703-1709.	3.6	10
153	An acid-seeking carrier-free drug achieves high antitumor activity via a "solution-particle―transition. Journal of Controlled Release, 2017, 262, 305-316.	4.8	9
154	The effect of the degree of substitution on the solubility of cellulose acetoacetates in water: A molecular dynamics simulation and density functional theory study. Carbohydrate Research, 2020, 496, 108134.	1.1	9
155	Lightweight, Environmentally Friendly, and Underwater Superelastic 3D-Architectured Aerogels for Efficient Protein Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11738-11747.	3.2	9
156	Pickering emulsion process assisted construction of regenerated chitin reinforced poly (lactic acid) blends. International Journal of Biological Macromolecules, 2019, 140, 10-16.	3.6	8
157	Study of the aggregation behaviour of three primary reactive dyes via molecular dynamics simulations. Molecular Simulation, 2020, 46, 627-637.	0.9	8
158	Synthesis and application of poly (cyclotriphosphazeneâ€resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). Polymers for Advanced Technologies, 2022, 33, 658-671.	1.6	8
159	Exclusive formation of poly(lactide) stereocomplexes with enhanced melt stability via regenerated cellulose assisted Pickering emulsion approach. Composites Communications, 2022, 32, 101138.	3.3	8
160	Highly transparent, self-healing and adhesive wearable ionogel as strain and temperature sensor. Polymer Chemistry, 2022, 13, 4064-4075.	1.9	8
161	Preparation and characterization of biodegradable poly(Ϊμ-caprolactone) self-reinforced composites and their crystallization behavior. Polymer International, 2017, 66, 1555-1563.	1.6	6
162	Dually self-reinforced Poly(ε-caprolactone) composites based on unidirectionally arranged fibers. Composites Science and Technology, 2018, 165, 331-338.	3.8	6

#	Article	IF	CITATIONS
163	Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118051.	2.0	6
164	A facile method for fabricating color adjustable multifunctional cotton fabrics with solid solution BiOBrxI1â^'x nanosheets. Cellulose, 2020, 27, 3517-3530.	2.4	6
165	A study of the diffusion behaviour of reactive dyes in cellulose fibres using confocal Raman microscopy. Coloration Technology, 2020, 136, 503-511.	0.7	5
166	Engineering regenerated nanosilk to efficiently stabilize pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128065.	2.3	5
167	Catalytic Performance of Pd Nanoparticles Obtained by Direct Reduction in Cellulose–Poly(ferrocenylsilane) Hybrid Sponges. Advanced Materials Interfaces, 2022, 9, .	1.9	5
168	Acrylonitrile-butadiene-styrene-based composites derived from "fish-net―inspired Pickering emulsion for high-performance electromagnetic interference shielding and thermal management. Composites Communications, 2022, 30, 101085.	3.3	5
169	High yield production of chitin nanocrystals via hydrochloric acid vapor pre-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128567.	2.3	5
170	Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. Polymers for Advanced Technologies, 2022, 33, 2231-2243.	1.6	5
171	Foaming of Polylactic Acid/Cellulose Nanocrystal Composites: Pickering Emulsion Templating for High-Homogeneity Filler Dispersions. ACS Applied Polymer Materials, 2022, 4, 111-120.	2.0	5
172	Preparation and properties of poly(εâ€caprolactone) selfâ€reinforced composites based on fibers/matrix structure. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
173	Nanocellulose sponges as efficient continuous flow reactors. Carbohydrate Polymers, 2019, 224, 115184.	5.1	4
174	Making polymers colored and stiffer by dyed regenerated cellulose employing Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124601.	2.3	4
175	Study on the effect of different dyeing systems on the interaction of multiâ€component reactive dyes by Raman spectroscopy. Coloration Technology, 2021, 137, 520-529.	0.7	4
176	Preparation of <scp>3D</scp> porous <scp>celluloseâ€chitosan</scp> hybrid gel macrospheres by alkaline urea system for enzyme immobilization. Polymers for Advanced Technologies, 2022, 33, 546-555.	1.6	4
177	Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers, 2022, 288, 119409.	5.1	4
178	Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their Application as Flame Retardants. Polymers, 2022, 14, 2072.	2.0	4
179	Facile biosynthesis of synthetic crystalline cellulose nanoribbon from maltodextrin through a minimized two-enzyme phosphorylase cascade and its application in emulsion. Journal of Biotechnology, 2021, 332, 54-60.	1.9	3
180	Comparison of the Rheological Properties and Structure of Fat Derivatives Generated via Different Mechanical Processing Techniques: Coleman Fat, Nanofat, and Stromal Vascular Fraction-Gel. Facial Plastic Surgery and Aesthetic Medicine, 2022, 24, 391-396.	0.5	3

#	Article	IF	CITATIONS
181	High strength and antiâ€freezing piezoresistive pressure sensor based on a composite gel. Polymers for Advanced Technologies, 2022, 33, 2448-2458.	1.6	3
182	Rigid and conductive lightweight regenerated cellulose/carbon nanotubes/acrylonitrile–butadiene–styrene nanocomposites constructed via a Pickering emulsion process. Journal of Applied Polymer Science, 2022, 139, 51964.	1.3	2
183	Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose, 2022, 29, 6719-6732.	2.4	2
184	Robust, floatable, steam generator based on the graded porous polyimide film for efficient solar desalination. Polymers for Advanced Technologies, 2021, 32, 3436-3445.	1.6	1
185	Re-dispersible dry sunflower oil emulsions enabled by regenerated chitin. LWT - Food Science and Technology, 2021, 149, 111892.	2.5	1
186	Polymer Brushes: Probing the Collapse Dynamics of Poly(N-isopropylacrylamide) Brushes by AFM: Effects of Co-nonsolvency and Grafting Densities (Small 10/2011). Small, 2011, 7, 1274-1274.	5.2	0
187	Fabrication and antimicrobial effects of silver nanoparticle-poly(N-isopropylacrylamide)-poly(ferrocenylsilane) hydrogel composites. Materials Research Society Symposia Proceedings, 2012, 1453, 21.	0.1	0
188	Macromol. Rapid Commun. 23/2016. Macromolecular Rapid Communications, 2016, 37, 1980-1980.	2.0	0
189	In situ growth of CuS NPs on 3D porous cellulose macrospheres as recyclable biocatalysts for organic dye degradation. RSC Advances, 2021, 11, 36554-36563.	1.7	0