
Namal Priyantha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11711002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmentally friendly adsorbent derived from rock melon skin for effective removal of toxic brilliant green dye: linear versus non-linear analyses. International Journal of Environmental Analytical Chemistry, 2023, 103, 4904-4923.	1.8	12
2	Effective and Simple NaOH-Modification Method to Remove Methyl Violet Dye via Ipomoea aquatica Roots. Adsorption Science and Technology, 2021, 2021, 1-12.	1.5	25
3	lpomoea aquatica roots as environmentally friendly and green adsorbent for efficient removal of Auramine O dye. Surfaces and Interfaces, 2020, 20, 100543.	1.5	12
4	Biosorption of heavy metal ions on peel of Artocarpus nobilis fruit: 1—Ni(II) sorption under static and dynamic conditions. Applied Water Science, 2019, 9, 1.	2.8	18
5	Irreversible sorption of Pb(II) from aqueous solution on breadfruit peel to mitigate environmental pollution problems. Water Science and Technology, 2019, 80, 2241-2249.	1.2	5
6	Artocarpus odoratissimus Leaves as an Eco-friendly Adsorbent for the Removal of Toxic Rhodamine B Dye in Aqueous Solution: Equilibrium Isotherm, Kinetics, Thermodynamics and Regeneration Studies. Arabian Journal for Science and Engineering, 2018, 43, 6011-6020.	1.7	27
7	Biosorption of cationic dyes on breadfruit (Artocarpus altilis) peel and core. Applied Water Science, 2018, 8, 1.	2.8	23
8	Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 2017, 10, S3216-S3228.	2.3	97
9	Utilizing <i>Artocarpus altilis</i> (breadfruit) skin for the removal of malachite green: isotherm, kinetics, regeneration, and column studies. Desalination and Water Treatment, 2016, 57, 16601-16610.	1.0	14
10	Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environmental Earth Sciences, 2016, 75, 1.	1.3	41
11	<i>Artocarpus camansi</i> Blanco (Breadnut) core as low-cost adsorbent for the removal of methylene blue: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment, 2016, 57, 5673-5685.	1.0	23
12	Investigation of the sorption characteristics of water lettuce (WL) as a potential low-cost biosorbent for the removal of methyl violet 2B. Desalination and Water Treatment, 2016, 57, 8319-8329.	1.0	14
13	Adsorption of crystal violet dye from aqueous solution onto chemically treated <i>Artocarpus odoratissimus</i> skin: equilibrium, thermodynamics, and kinetics studies. Desalination and Water Treatment, 2016, 57, 10246-10260.	1.0	30
14	Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environmental Technology (United Kingdom), 2015, 36, 86-97.	1.2	88
15	Artocarpus altilis (breadfruit) skin as a potential low-cost biosorbent for the removal of crystal violet dye: equilibrium, thermodynamics and kinetics studies. Environmental Earth Sciences, 2015, 73, 3239-3247.	1.3	58
16	Removal behavior of peat collected from Brunei Darussalam for Pb(II) ions from aqueous solution: equilibrium isotherm, thermodynamics, kinetics and regeneration studies. Environmental Earth Sciences, 2015, 74, 2541-2551.	1.3	14
17	Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 2015, 5, 34603-34615.	1.7	51
18	Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment, 2015, 55, 664-677.	1.0	52

NAMAL PRIYANTHA

#	Article	IF	CITATIONS
19	Sorption characteristics of peat of Brunei Darussalam V: removal of Congo red dye from aqueous solution by peat. Desalination and Water Treatment, 2015, 54, 2592-2600.	1.0	42
20	Cempedak Durian (Artocarpus sp.) Peel as a Biosorbent for the Removal of Toxic Methyl Violet 2B from Aqueous Solution. Korean Chemical Engineering Research, 2015, 53, 576-583.	0.2	9
21	Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, 2014, 72, 2263-2277.	1.3	49
22	Adsorption Behavior of Methyl Violet 2B Using Duckweed: Equilibrium and Kinetics Studies. Arabian Journal for Science and Engineering, 2014, 39, 6757-6765.	1.1	32
23	Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus. Environmental Science and Pollution Research, 2012, 19, 3250-3256.	2.7	37
24	Interaction of Cr(VI) species with thermally treated brick clay. Environmental Science and Pollution Research, 2011, 18, 75-81.	2.7	12
25	Investigation of kinetics of Cr(VI)–fired brick clay interaction. Journal of Hazardous Materials, 2011, 188, 193-197.	6.5	18
26	Optimization of parameters for effective removal of Cr(VI) species by burnt brick clay. Journal of the National Science Foundation of Sri Lanka, 2010, 38, 109.	0.1	4
27	Correlation between firing temperature and defluoridation capacity of brick clay. International Journal of Global Environmental Issues, 2009, 9, 239.	0.1	6
28	Amperometric sensor for propanil. Analytica Chimica Acta, 1996, 320, 263-268.	2.6	22
29	Electrocatalytic metalloporphyrin electrode for detection of organohalides. Electrochimica Acta, 1991, 36, 855-858.	2.6	13
30	<i>Artocarpus odoratissimus</i> skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 0, , 1-12.	1.0	17
31	Characterization of peat samples collected from Brunei Darussalam and their evaluation as potential adsorbents for Cu(II) removal from aqueous solution. Desalination and Water Treatment, 0, , 1-15.	1.0	4
32	Application of Momordica charantia (bitter gourd) waste for the removal of malachite green dye from aqueous solution. , 0, 154, 385-394.		3
33	Adsorption of heavy metal lead using Citrus grandis (Pomelo) leaves as low-cost adsorbent. , 0, 166, 44-52.		20
34	Enhancement of adsorption characteristics of Methyl violet 2B dye through NaOH treatment of Cucumis melo var. cantalupensis (rock melon) skin. , 0, 180, 336-348.		5