Jesse B Naab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11709249/publications.pdf

Version: 2024-02-01

	840776 839539	
398	11	18
citations	h-index	g-index
	1.0	
18	18	644
docs citations	times ranked	citing authors
	citations 18	398 11 citations h-index 18 18

#	Article	IF	CITATIONS
1	Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environmental Research Letters, 2018, 13, 034014.	5.2	70
2	Climate change impact on water- and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 2019, 235, 104-117.	5.1	54
3	Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana. Frontiers in Plant Science, 2017, 8, 996.	3.6	47
4	N2 fixation in cowpea plants grown in farmers' fields in the Upper West Region of Ghana, measured using15N natural abundance. Symbiosis, 2009, 48, 37-46.	2.3	42
5	Potential impact of climate change on peanut yield in Senegal, West Africa. Field Crops Research, 2018, 219, 148-159.	5.1	34
6	CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus uptake, and soil moisture dynamics in the dry savanna of West Africa. Field Crops Research, 2018, 217, 134-149.	5.1	32
7	Interactive effects of conservation tillage, residue management, and nitrogen fertilizer application on soil properties under maize-cotton rotation system on highly weathered soils of West Africa. Soil and Tillage Research, 2020, 196, 104473.	5.6	26
8	CROPGRO-Cotton model for determining climate change impacts on yield, water- and N- use efficiencies of cotton in the Dry Savanna of West Africa. Agricultural Systems, 2018, 165, 85-96.	6.1	14
9	Crop management adaptations to improve and stabilize crop yields under low-yielding conditions in the Sudan Savanna of West Africa. European Journal of Agronomy, 2018, 101, 1-9.	4.1	14
10	Biomass allocation in five semi-arid afforestation species is driven mainly by ontogeny rather than resource availability. Annals of Forest Science, $2017,74,1$.	2.0	12
11	Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin. Sustainability, 2018, 10, 1931.	3.2	12
12	Productivity and nutrient use efficiency of maize, sorghum, and cotton in the West African Dry Savanna. Journal of Plant Nutrition and Soil Science, 2018, 181, 261-274.	1.9	8
13	Yield Improvement and Genotype × Environment Analyses of Peanut Cultivars in Multilocation Trials in West Africa. Crop Science, 2014, 54, 2413-2422.	1.8	7
14	Effects of Fertilization Rate and Water Availability on Peanut Growth and Yield in Senegal (West) Tj ETQq0 0 0 rg	gBT/Qverl	ock 10 Tf 50 2
15	Soil tillage, residue management and site interactions affecting nitrogen use efficiency in maize and cotton in the Sudan Savanna of Africa. Field Crops Research, 2019, 244, 107629.	5.1	6
16	Sapling biomass allometry and carbon content in five afforestation species on marginal farmland in semi-arid Benin. New Forests, 2018, 49, 363-382.	1.7	5
17	Genetic Improvement of Peanut Cultivars for West Africa Evaluated with the CSMâ€CROPGROâ€Peanut Model. Agronomy Journal, 2015, 107, 2213-2229.	1.8	4
18	Can reduced tillage buffer the future climate warming effects on maize yield in different soil types of West Africa?. Soil and Tillage Research, 2021, 205, 104767.	5 . 6	4