Lixue Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11706521/publications.pdf

Version: 2024-02-01

933264 887953 20 803 10 17 citations h-index g-index papers 21 21 21 1048 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Frontiers in Physiology, 2013, 4, 354.	1.3	265
2	Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis. PLoS ONE, 2013, 8, e61991.	1.1	127
3	Activation of GPR4 by Acidosis Increases Endothelial Cell Adhesion through the cAMP/Epac Pathway. PLoS ONE, 2011, 6, e27586.	1.1	110
4	Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer Letters, 2011, 312, 197-208.	3.2	80
5	Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells. International Journal of Molecular Sciences, 2017, 18, 278.	1.8	66
6	Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8. International Journal of Molecular Sciences, 2013, 14, 20236-20255.	1.8	36
7	Analysis of cellular objects through diffraction images acquired by flow cytometry. Optics Express, 2013, 21, 24819.	1.7	33
8	Contextual tumor suppressor function of T cell death-associated gene 8 (TDAG8) in hematological malignancies. Journal of Translational Medicine, 2017, 15, 204.	1.8	20
9	Pulse-rate discrimination deficit in cochlear implant users: is the upper limit of pitch peripheral or central?. Hearing Research, 2019, 371, 1-10.	0.9	13
10	Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear Implant Users: Effects of Stimulation Mode. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 99-111.	0.9	11
11	Evaluating Multipulse Integration as a Neural-Health Correlate in Human Cochlear-Implant Users: Relationship to Psychometric Functions for Detection. Trends in Hearing, 2017, 21, 233121651769010.	0.7	10
12	Temporal Modulation Detection Depends on Sharpness of Spatial Tuning. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 317-330.	0.9	7
13	Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity?. Trends in Hearing, 2020, 24, 233121652094838.	0.7	7
14	A behavioral method to estimate charge integration efficiency in cochlear implant users. Journal of Neuroscience Methods, 2020, 342, 108802.	1.3	5
15	Targeting Tumor Microenvironments for Cancer Prevention and Therapy. , 2012, , .		4
16	Effect of pulse phase duration on forward masking and spread of excitation in cochlear implant listeners. PLoS ONE, 2020, 15, e0236179.	1.1	3
17	Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation. Hearing Research, 2020, 389, 107921.	0.9	3
18	Sensitivity to Pulse Phase Duration as a Marker of Neural Health Across Cochlear Implant Recipients and Electrodes. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 177-192.	0.9	2

#	Article	IF	CITATIONS
19	Function and Signaling of the pH-Sensing G Protein-Coupled Receptors in Physiology and Diseases. , 2014, , 45-65.		1
20	Perception of speaker sincerity in complex social interactions by cochlear implant users. PLoS ONE, 2022, 17, e0269652.	1.1	0