
## Stephen P Schoenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11706470/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions.<br>IScience, 2022, 25, 103850.                                                                                                                                | 1.9  | 13        |
| 2  | Developmentally distinct CD4 <sup>+</sup> T <sub>reg</sub> lineages shape the CD8 <sup>+</sup> T cell response to acute <i>Listeria</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113329119. | 3.3  | 4         |
| 3  | Single-cell analysis of immune repertoires enabled. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100106118.                                                                                                | 3.3  | 0         |
| 4  | The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New<br>Bioinformatics Resource for Use by the Cancer Immunology Community. Frontiers in Immunology,<br>2021, 12, 735609.                                          | 2.2  | 10        |
| 5  | TLR9 Sensing of Self-DNA Controls Cell-Mediated Immunity to Listeria Infection via Rapid Conversion of Conventional CD4+ T Cells to Treg. Cell Reports, 2020, 31, 107249.                                                                                   | 2.9  | 9         |
| 6  | Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. Journal of Leukocyte Biology, 2020, 107, 625-633.                                                                                                                                      | 1.5  | 40        |
| 7  | A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Frontiers<br>in Immunology, 2019, 10, 491.                                                                                                                         | 2.2  | 23        |
| 8  | Leveraging TCR Affinity in Adoptive Immunotherapy against Shared Tumor/Self-Antigens. Cancer<br>Immunology Research, 2019, 7, 40-49.                                                                                                                        | 1.6  | 17        |
| 9  | Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How<br>Can These Be Overcome?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028837.                                                                  | 2.3  | 7         |
| 10 | Class-B CpG-ODN Formulated With a Nanostructure Induces Type I Interferons-Dependent and CD4+ T<br>Cell-Independent CD8+ T-Cell Response Against Unconjugated Protein Antigen. Frontiers in<br>Immunology, 2018, 9, 2319.                                   | 2.2  | 13        |
| 11 | Notch signaling maintains T cell memories. Nature Medicine, 2015, 21, 16-18.                                                                                                                                                                                | 15.2 | 7         |
| 12 | FoxO3 is a negative regulator of primary CD8 <sup>+</sup> Tâ€cell expansion but not of memory formation. Immunology and Cell Biology, 2015, 93, 120-125.                                                                                                    | 1.0  | 16        |
| 13 | Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature, 2015, 520, 692-696.                                                                                                                                                      | 13.7 | 1,030     |
| 14 | CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through<br>Its Distal PYAP Proline Motif. Journal of Immunology, 2015, 194, 4717-4728.                                                                           | 0.4  | 56        |
| 15 | Invariant NKT Cells Induce Plasmacytoid Dendritic Cell (DC) Cross-Talk with Conventional DCs for Efficient Memory CD8+ T Cell Induction. Journal of Immunology, 2013, 190, 5609-5619.                                                                       | 0.4  | 43        |
| 16 | SLAT Regulates CD8+ T Cell Clonal Expansion in a Cdc42- and NFAT1-Dependent Manner. Journal of Immunology, 2013, 190, 174-183.                                                                                                                              | 0.4  | 15        |
| 17 | CD69 guides CD4 <sup>+</sup> T cells to the seat of memory. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8358-8359.                                                                                          | 3.3  | 20        |
| 18 | Nab2 regulates secondary CD8+ T-cell responses through control of TRAIL expression. Blood, 2012, 119, 798-804.                                                                                                                                              | 0.6  | 21        |

STEPHEN P SCHOENBERGER

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The CD4+ T-cell help signal is transmitted from APC to CD8+ T-cells via CD27–CD70 interactions.<br>Nature Communications, 2012, 3, 948.                                                   | 5.8 | 97        |
| 20 | Polyfunctional CD4+ T Cell Responses to Immunodominant Epitopes Correlate with Disease Activity of Virulent Salmonella. PLoS ONE, 2012, 7, e43481.                                        | 1.1 | 21        |
| 21 | Autocrine IL-2 is required for secondary population expansion of CD8+ memory T cells. Nature<br>Immunology, 2011, 12, 908-913.                                                            | 7.0 | 214       |
| 22 | Interleukin-2 rescues helpless effector CD8+ T cells by diminishing the susceptibility to TRAIL mediated death. Immunology Letters, 2011, 139, 25-32.                                     | 1.1 | 16        |
| 23 | Differential B7–CD28 Costimulatory Requirements for Stable and Inflationary Mouse<br>Cytomegalovirus-Specific Memory CD8 T Cell Populations. Journal of Immunology, 2011, 186, 3874-3881. | 0.4 | 52        |
| 24 | B7-Mediated Costimulation of CD4 T Cells Constrains Cytomegalovirus Persistence. Journal of Virology, 2011, 85, 390-396.                                                                  | 1.5 | 28        |
| 25 | Immune Adjuvant Efficacy of CpG Oligonucleotide in Cancer Treatment Is Founded Specifically upon TLR9 Function in Plasmacytoid Dendritic Cells. Cancer Research, 2011, 71, 6428-6437.     | 0.4 | 99        |
| 26 | Sustained antibody responses depend on CD28 function in bone marrow–resident plasma cells.<br>Journal of Experimental Medicine, 2011, 208, 1435-1446.                                     | 4.2 | 156       |
| 27 | Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nature<br>Immunology, 2011, 12, 1086-1095.                                                          | 7.0 | 63        |
| 28 | The TNFR family members OX40 and CD27 link viral virulence to protective T cell vaccines in mice.<br>Journal of Clinical Investigation, 2011, 121, 296-307.                               | 3.9 | 65        |
| 29 | Sustained Antibody Responses Depend on CD28 Function in Bone Marrow Resident Plasma Cells. Blood, 2011, 118, 182-182.                                                                     | 0.6 | 6         |
| 30 | Enhancement of proliferation and downregulation of TRAIL expression on CD8 <sup>+</sup> T cells by<br>ILâ€21. European Journal of Immunology, 2010, 40, 2990-2992.                        | 1.6 | 6         |
| 31 | Distinct roles of cytolytic effector molecules for antigenâ€restricted killing by CTL in vivo.<br>Immunology and Cell Biology, 2010, 88, 761-765.                                         | 1.0 | 13        |
| 32 | Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nature Immunology, 2010, 11, 114-120.                                                                    | 7.0 | 450       |
| 33 | Plasticity in programming of effector and memory CD8 <sup>+</sup> Tâ€cell formation. Immunological<br>Reviews, 2010, 235, 190-205.                                                        | 2.8 | 176       |
| 34 | TRAIL-expressing CD8+ T cells mediate tolerance following soluble peptide-induced peripheral T cell deletion. Journal of Leukocyte Biology, 2010, 88, 1217-1225.                          | 1.5 | 18        |
| 35 | Separate Roles for Antigen Recognition and Lymph Node Inflammation in CD8+ Memory T Cell<br>Formation. Journal of Immunology, 2010, 185, 3167-3173.                                       | 0.4 | 5         |
| 36 | Preferential Use of B7.2 and Not B7.1 in Priming of Vaccinia Virus-Specific CD8 T Cells. Journal of<br>Immunology, 2009, 182, 2909-2918.                                                  | 0.4 | 32        |

STEPHEN P SCHOENBERGER

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ex Uno Plura. Science, 2009, 323, 466-467.                                                                                                                                            | 6.0  | 5         |
| 38 | The TRAIL of Helpless CD8+T Cells in HIV Infection. AIDS Research and Human Retroviruses, 2008, 24, 1175-1183.                                                                        | 0.5  | 15        |
| 39 | Cutting Edge: Murine Cytomegalovirus Induces a Polyfunctional CD4 T Cell Response. Journal of<br>Immunology, 2008, 180, 6472-6476.                                                    | 0.4  | 95        |
| 40 | Adoptive Therapy with T Cells/NK Cells. Biology of Blood and Marrow Transplantation, 2007, 13, 33-42.                                                                                 | 2.0  | 15        |
| 41 | Efficient T Cell Activation via a Toll-Interleukin 1 Receptor-Independent Pathway. Immunity, 2006, 24, 787-799.                                                                       | 6.6  | 91        |
| 42 | IL-2 gets with the program. Nature Immunology, 2006, 7, 798-800.                                                                                                                      | 7.0  | 4         |
| 43 | The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nature Immunology, 2006, 7, 475-481.                                    | 7.0  | 193       |
| 44 | Duration of CTL activation regulates IL-2 production required for autonomous clonal expansion.<br>European Journal of Immunology, 2006, 36, 1707-1717.                                | 1.6  | 18        |
| 45 | Cytosolic Entry Controls CD8 + -T-Cell Potency during Bacterial Infection. Infection and Immunity, 2006, 74, 6387-6397.                                                               | 1.0  | 56        |
| 46 | Lipid Raft Targeting of Hematopoietic Protein Tyrosine Phosphatase by Protein Kinase C Î,-Mediated<br>Phosphorylation. Molecular and Cellular Biology, 2006, 26, 1806-1816.           | 1.1  | 32        |
| 47 | CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature, 2005, 434, 88-93.                                                              | 13.7 | 547       |
| 48 | Rescue of memory CD8+ T cell reactivity in peptide/TLR9 ligand immunization by codelivery of cytokines or CD40 ligation. Virology, 2005, 331, 151-158.                                | 1.1  | 22        |
| 49 | Removal of C-Terminal Src Kinase from the Immune Synapse by a New Binding Protein. Molecular and Cellular Biology, 2005, 25, 2227-2241.                                               | 1.1  | 31        |
| 50 | Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. Journal of Experimental Medicine, 2005, 201, 419-430.  | 4.2  | 107       |
| 51 | Protein Kinase C-Î, Is an Early Survival Factor Required for Differentiation of Effector CD8+ T Cells.<br>Journal of Immunology, 2005, 175, 5126-5134.                                | 0.4  | 59        |
| 52 | Protective and Pathological Roles of Virus-Specific and Bystander CD8+T Cells in Herpetic Stromal<br>Keratitis. Journal of Immunology, 2004, 173, 7575-7583.                          | 0.4  | 41        |
| 53 | IL-7 regulates basal homeostatic proliferation of antiviral CD4+T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9357-9362. | 3.3  | 176       |
| 54 | Lck Dephosphorylation at Tyr-394 and Inhibition of T Cell Antigen Receptor Signaling by Yersinia<br>Phosphatase YopH. Journal of Biological Chemistry, 2004, 279, 4922-4928.          | 1.6  | 94        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | CD154 is a negative regulator of autoaggressive CD8+ T cells in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9345-9350.                               | 3.3  | 14        |
| 56 | CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature, 2003, 421, 852-856.                                                                                                       | 13.7 | 1,443     |
| 57 | Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nature Immunology, 2003, 4, 44-48.                                                                                                                             | 7.0  | 94        |
| 58 | Dynamic programming of CD8+ T lymphocyte responses. Nature Immunology, 2003, 4, 361-365.                                                                                                                              | 7.0  | 357       |
| 59 | Immunotherapy of established tumors using bone marrow transplantation with antigen gene–modified hematopoietic stem cells. Nature Medicine, 2003, 9, 952-958.                                                         | 15.2 | 55        |
| 60 | A Subset of Toll-Like Receptor Ligands Induces Cross-presentation by Bone Marrow-Derived Dendritic<br>Cells. Journal of Immunology, 2003, 170, 4102-4110.                                                             | 0.4  | 273       |
| 61 | In Vivo Ligation of CD40 Enhances Priming Against the Endogenous Tumor Antigen and Promotes CD8+<br>T Cell Effector Function in SV40 T Antigen Transgenic Mice. Journal of Immunology, 2003, 171, 697-707.            | 0.4  | 74        |
| 62 | Cutting Edge: A Crucial Role for B7-CD28 in Transmitting T Help from APC to CTL. Journal of Immunology, 2002, 169, 4094-4097.                                                                                         | 0.4  | 54        |
| 63 | Tumor Growth Enhances Cross-Presentation Leading to Limited T Cell Activation without Tolerance.<br>Journal of Experimental Medicine, 2002, 195, 423-435.                                                             | 4.2  | 120       |
| 64 | CD40L Blockade Prevents Autoimmune Diabetes by Induction of Bitypic NK/DC Regulatory Cells.<br>Immunity, 2002, 16, 403-415.                                                                                           | 6.6  | 150       |
| 65 | Herpetic stromal keratitis in the absence of viral antigen recognition. Cellular Immunology, 2002, 219, 108-118.                                                                                                      | 1.4  | 39        |
| 66 | CD40 Signaling and Autoimmunity. , 2001, 5, 51-61.                                                                                                                                                                    |      | 12        |
| 67 | NaÃ <sup>-</sup> ve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunology, 2001, 2, 423-429.                                                        | 7.0  | 769       |
| 68 | The Roles of MHC Class II, CD40, and B7 Costimulation in CTL Induction by Plasmid DNA. Journal of Immunology, 2001, 166, 3061-3066.                                                                                   | 0.4  | 47        |
| 69 | Cross-Presentation of Glycoprotein 96–Associated Antigens on Major Histocompatibility Complex<br>Class I Molecules Requires Receptor-Mediated Endocytosis. Journal of Experimental Medicine, 2000,<br>191, 1965-1974. | 4.2  | 325       |
| 70 | Role of Antigen-Presenting Cells in Mediating Tolerance and Autoimmunity. Journal of Experimental<br>Medicine, 2000, 191, 2021-2028.                                                                                  | 4.2  | 148       |
| 71 | Melanoma immunotherapy by targeted IL-2 depends on CD4+ T-cell help mediated by CD40/CD40L interaction. Journal of Clinical Investigation, 2000, 105, 1623-1630.                                                      | 3.9  | 33        |
| 72 | CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Medicine, 1999, 5, 774-779.                                            | 15.2 | 439       |

| #  | ARTICLE                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature, 1998, 393, 480-483.                                          | 13.7 | 2,371     |
| 74 | CD40–CD40Ligand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor<br>immunity. Seminars in Immunology, 1998, 10, 443-448. | 2.7  | 93        |
| 75 | Activation or frustration of anti-tumor responses by T-cell-based immune modulation. Seminars in Immunology, 1997, 9, 323-327.                       | 2.7  | 10        |
| 76 | Harnessing self-reactivity in cancer immunotherapy. Seminars in Immunology, 1996, 8, 303-309.                                                        | 2.7  | 23        |