
Balaji Sambandam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11706042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946.	5.8	92
2	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137069.	6.6	23
3	Recent Achievements in Experimental and Computational Studies of Positive Electrode Materials for Nonaqueous Ca- and Al-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 9209-9227.	1.5	5
4	A new telluriumâ€based Ni ₃ TeO ₆ â€carbon nanotubes composite anode for Naâ€ion battery. International Journal of Energy Research, 2022, 46, 16041-16049.	2.2	6
5	Hyper oxidized V6O13+·nH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. Energy Storage Materials, 2021, 35, 47-61.	9.5	38
6	Recent Developments of Zinc-Ion Batteries. , 2021, , 27-57.		1
7	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	1.9	8
8	Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chemical Engineering Journal, 2021, 422, 130052.	6.6	58
9	Validating the Structural (In)stability of P3- and P2-Na _{0.67} Mg _{0.1} Mn _{0.9} O ₂ -Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & amp; Interfaces, 2021, 13, 53877-53891.	4.0	10
10	Na _{2.3} Cu _{1.1} Mn ₂ O _{7â[~]î´} nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. Journal of Materials Chemistry A, 2020, 8, 770-778.	5.2	20
11	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials, 2020, 28, 407-417.	9.5	175
12	High lithium storage properties in a manganese sulfide anode <i>via</i> an intercalation-cum-conversion reaction. Journal of Materials Chemistry A, 2020, 8, 17537-17549.	5.2	15
13	Multidimensional Na ₄ VMn _{0.9} Cu _{0.1} (PO ₄) ₃ /C cotton-candy cathode materials for high energy Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12055-12068.	5.2	48
14	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	8.8	303
15	K ⁺ intercalated V ₂ O ₅ nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20335-20347.	5.2	116
16	A Versatile Pyramidal Hauerite Anode in Congeniality Diglymeâ€Based Electrolytes for Boosting Performance of Li―and Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1900710.	10.2	29
17	Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Research, 2019, 12, 911-917.	5.8	38
18	A new rechargeable battery based on a zinc anode and a NaV ₆ O ₁₅ nanorod cathode. Chemical Communications, 2019, 55, 3793-3796.	2.2	51

BALAJI SAMBANDAM

#	Article	IF	CITATIONS
19	Facile synthesis of pyrite (FeS ₂ /C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors. Nanoscale, 2018, 10, 5938-5949.	2.8	48
20	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn ₂ V ₂ O ₇ nanowire cathode through intercalation regulation. Journal of Materials Chemistry A, 2018, 6, 3850-3856.	5.2	293
21	Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 810, 34-40.	1.9	27
22	Na ₂ V ₆ O ₁₆ ·3H ₂ O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. Nano Letters, 2018, 18, 2402-2410.	4.5	461
23	Metal organic framework-combustion: A one-pot strategy to NiO nanoparticles with excellent anode properties for lithium ion batteries. Journal of Energy Chemistry, 2018, 27, 300-305.	7.1	28
24	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, 1, .	2.0	37
25	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	8.8	159
26	K ₂ V ₆ O ₁₆ ·2.7H ₂ O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15530-15539.	5.2	201
27	Synthesis, characterization and performance of visible light active C-TiO 2 for pharmaceutical photodegradation. Journal of Environmental Chemical Engineering, 2017, 5, 757-767.	3.3	41
28	One step pyro-synthesis process of nanostructured Li3V2(PO4)3/C cathode for rechargeable Li-ion batteries. Materials Today Communications, 2017, 10, 105-111.	0.9	13
29	Facile green synthesis of a Co 3 V 2 O 8 nanoparticle electrode for high energy lithium-ion battery applications. Journal of Colloid and Interface Science, 2017, 501, 133-141.	5.0	39
30	Investigation of Li-ion storage properties of earth abundant β-Mn 2 V 2 O 7 prepared using facile green strategy. Journal of Power Sources, 2017, 350, 80-86.	4.0	50
31	Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chemical Engineering Journal, 2017, 328, 454-463.	6.6	67
32	Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal-organic framework-combustion technique for advanced Li-ion batteries. Ceramics International, 2017, 43, 13224-13232.	2.3	42
33	A sponge network-shaped Mn ₃ O ₄ /C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. Inorganic Chemistry Frontiers, 2016, 3, 1609-1615.	3.0	31
34	Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co ₃ V ₂ O ₈ microsphere anode for high energy lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14605-14613.	5.2	64
35	Co ₃ V ₂ O ₈ Sponge Network Morphology Derived from Metal–Organic Framework as an Excellent Lithium Storage Anode Material. ACS Applied Materials & Interfaces, 2016, 8, 8546-8553.	4.0	139
36	Rapid Synthesis of C-TiO ₂ : Tuning the Shape from Spherical to Rice Grain Morphology for Visible Light Photocatalytic Application. ACS Sustainable Chemistry and Engineering, 2015, 3, 1321-1329.	3.2	75

BALAJI SAMBANDAM

#	Article	IF	CITATIONS
37	Oxygen vacancies and intense luminescence in manganese loaded Zno microflowers for visible light water splitting. Nanoscale, 2015, 7, 13935-13942.	2.8	54
38	Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 8541.	1.3	62
39	Davydov splitting in cadmium vacancy emission, ferromagnetism and photosensitivity in manganese incorporated CdS nanocrystals. RSC Advances, 2014, 4, 22141-22154.	1.7	6
40	Coexistence of antiferromagnetism and ferromagnetism in Mn2+/CdS nanocrystals and their photophysical properties. RSC Advances, 2013, 3, 5184.	1.7	14
41	Manganous ion dictated morphology change and ferromagnetism in CdS nanocrystals. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	11
42	Switching on Antiferromagnetic Coupled Superparamagnetism by Annealing Ferromagnetic Mn/CdS Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 11413-11419.	1.5	18
43	Davydov Split PL Emission and EPR Correlation in β-MnS Layered CdS Nanorods. Journal of Physical Chemistry C, 2009, 113, 9486-9496.	1.5	10