

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11704451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology, 2009, 20, 364-371.	3.3	278
2	Revealing Nature's Cellulase Diversity: The Digestion Mechanism of <i>Caldicellulosiruptor bescii</i> CelA. Science, 2013, 342, 1513-1516.	6.0	253
3	Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels, 2010, 1, 323-341.	1.4	175
4	Natural paradigms of plant cell wall degradation. Current Opinion in Biotechnology, 2009, 20, 330-338.	3.3	136
5	Dramatic performance of <i>Clostridium thermocellum</i> explained by its wide range of cellulase modalities. Science Advances, 2016, 2, e1501254.	4.7	99
6	Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. BioTechniques, 2006, 41, 435-443.	0.8	89
7	A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Current Opinion in Biotechnology, 2008, 19, 218-227.	3.3	86
8	The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein. Journal of Bacteriology, 2003, 185, 4548-4557.	1.0	84
9	Engineering enhanced cellobiohydrolase activity. Nature Communications, 2018, 9, 1186.	5.8	72
10	Architecture of the Bacteroides cellulosolvens Cellulosome: Description of a Cell Surface-Anchoring Scaffoldin and a Family 48 Cellulase. Journal of Bacteriology, 2004, 186, 968-977.	1.0	70
11	In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils. Journal of Physical Chemistry B, 2011, 115, 635-641.	1.2	60
12	Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnology for Biofuels, 2016, 9, 227.	6.2	52
13	A novel family of carbohydrate-binding modules identified withRuminococcus albusproteins. FEBS Letters, 2004, 566, 11-16.	1.3	50
14	Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of <i>Acetivibrio cellulolyticus</i> and <i>Clostridium thermocellum</i> . FEMS Microbiology Letters, 2006, 254, 308-316.	0.7	50
15	Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Frontiers in Microbiology, 2014, 5, 142.	1.5	48
16	A Novel Acetivibrio cellulolyticus Anchoring Scaffoldin That Bears Divergent Cohesins. Journal of Bacteriology, 2004, 186, 5782-5789.	1.0	43
17	Does the cellulose-binding module move on the cellulose surface?. Cellulose, 2009, 16, 587-597.	2.4	40
18	Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnology for Biofuels, 2012, 5, 20.	6.2	40

Qı Xu

#	Article	IF	CITATIONS
19	Improving activity of minicellulosomes by integration of intra- and intermolecular synergies. Biotechnology for Biofuels, 2013, 6, 126.	6.2	37
20	Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose, 2009, 16, 19-26.	2.4	29
21	The Unique Binding Mode of Cellulosomal CBM4 from Clostridium thermocellum Cellobiohydrolase A. Journal of Molecular Biology, 2010, 402, 374-387.	2.0	28
22	Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes. Biotechnology and Bioengineering, 2007, 98, 123-131.	1.7	24
23	Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation. Biotechnology for Biofuels, 2012, 5, 78.	6.2	23
24	Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. Frontiers in Microbiology, 2018, 9, 3276.	1.5	20
25	Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochemical and Photobiological Sciences, 2007, 6, 1027-1033.	1.6	19
26	Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microbial Cell Factories, 2017, 16, 126.	1.9	14
27	Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Biotechnology for Biofuels, 2018, 11, 322.	6.2	13
28	Strategies to reduce endâ€product inhibition in family 48 glycoside hydrolases. Proteins: Structure, Function and Bioinformatics, 2016, 84, 295-304.	1.5	10
29	Cellulases For Biomass Conversion. , 2007, , 35-50.		7
30	Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure. Biotechnology for Biofuels, 2017, 10, 274.	6.2	7
31	Ordered arrays of quantum dots using cellulosomal proteins. Industrial Biotechnology, 2005, 1, 198-206.	0.5	6
32	Production of Ethanol from Engineered Trichoderma reesei. , 2015, , 197-208.		6
33	Engineered carbohydrate-binding module (CBM) protein-suspended single-walled carbon nanotubes in water. Chemical Communications, 2009, , 337-339.	2.2	4
34	Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast. Biotechnology for Biofuels, 2021, 14, 6.	6.2	4
35	Response to Comment on "Revealing Nature's Cellulase Diversity: The Digestion Mechanism of <i>Caldicellulosiruptor bescii</i> CelAâ€e Science, 2014, 344, 578-578.	6.0	1
36	Modeling the Cellulosome Using Multiscale Methods. ACS Symposium Series, 2010, , 75-98.	0.5	0

	Qı	Xu	
#	Article	IF	CITATIONS
37	Methods for Metabolic Engineering of a Filamentous Trichoderma reesei. Methods in Molecular Biology, 2020, 2096, 45-50.	0.4	0