Jung Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11703931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources, 2011, 196, 6682-6687.	4.0	73
2	Electrochemical properties of micron-sized, spherical, meso- and macro-porous Co3O4 and CoO–carbon composite powders prepared by a two-step spray drying process. Nanoscale, 2014, 6, 4789.	2.8	36
3	Characteristics of Bi-based glass frit having similar mean size and morphology to those of silver powders at high firing temperatures. Journal of Alloys and Compounds, 2010, 497, 259-266.	2.8	28
4	Electrochemical properties of Li2O–2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process. Journal of Power Sources, 2012, 210, 110-115.	4.0	25
5	Electrochemical properties of cobalt sulfide-carbon composite powders prepared by simple sulfidation process of spray-dried precursor powders. Electrochimica Acta, 2014, 137, 336-343.	2.6	24
6	Nanosized LiMn2O4 powders prepared by flame spray pyrolysis from aqueous solution. Journal of Power Sources, 2011, 196, 2858-2862.	4.0	23
7	Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm prepared by flame spray pyrolysis. Materials Chemistry and Physics, 2012, 134, 254-259.	2.0	23
8	Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders. Journal of Power Sources, 2013, 244, 129-135.	4.0	22
9	Electrochemical properties of spherically shaped dense V2O5 cathode powders prepared directly by spray pyrolysis. Journal of Power Sources, 2012, 211, 84-91.	4.0	20
10	Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceramics International, 2011, 37, 1967-1971.	2.3	18
11	Characteristics of samaria-doped ceria nanoparticles prepared by spray pyrolysis. Ceramics International, 2010, 36, 465-471.	2.3	15
12	Electrochemical properties of 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis. Materials Research Bulletin, 2012, 47, 2022-2026.	2.7	15
13	Superior electrochemical properties of α-Fe 2 O 3 nanofibers with a porous core/dense shell structure formed from iron acetylacetonate-polyvinylpyrrolidone composite fibers. Electrochimica Acta, 2015, 154, 211-218.	2.6	13
14	Electrochemical properties of nanometer-sized 0.6Li2MnO3·0.4LiNi0.5Mn0.5O2 composite powders prepared by flame spray pyrolysis. Ceramics International, 2013, 39, 331-336.	2.3	12
15	Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of Alloys and Compounds, 2011, 509, 8077-8081.	2.8	11
16	Nano-sized LiNi0.5Mn1.5O4 cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis. Journal of Industrial and Engineering Chemistry, 2013, 19, 1204-1208.	2.9	11
17	Firing characteristics of nano-sized glass powders prepared by flame spray pyrolysis for electrode application. Journal of the Ceramic Society of Japan, 2009, 117, 1311-1316.	0.5	7
18	BaMgAl10O17: Eu2+ phosphor powders prepared from precursor powders with a hollow and thin wall structure containing NH4F flux. Electronic Materials Letters, 2010, 6, 81-86.	1.0	6

Jung Hyun Kim

#	Article	IF	CITATIONS
19	Fine-sized Tb3Al5O12:Ce phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid. Electronic Materials Letters, 2012, 8, 283-287.	1.0	5
20	Preparation of silver-glass composite powder and conducting film. Journal of the Ceramic Society of Japan, 2010, 118, 353-356.	0.5	2
21	Effect of preparation conditions on the properties of silver-glass composite powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2010, 118, 25-29.	0.5	2
22	Properties of nano-sized glass powders prepared by flame spray pyrolysis as an inorganic binder in ink-jet printing. Journal of the Ceramic Society of Japan, 2010, 118, 613-616.	0.5	2
23	Eu-doped B2O3–ZnO–PbO glass phosphor powders withÂspherical shape and fine size prepared by spray pyrolysis. Applied Physics A: Materials Science and Processing, 2010, 98, 671-677.	1.1	2
24	Characteristics of nano-sized Ag-Pd (70-30)-glass composite powders prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 23-28.	0.5	1
25	Size-controlled glass frits with spherical shape for Al electrodes in Si solar cells. Journal of the Ceramic Society of Japan, 2011, 119, 954-960.	0.5	1
26	Characteristics of BaTiO3-coated Ag powders directly prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2012, 120, 15-20.	0.5	1
27	Sintering characteristics of nano-sized Ag–Pd–glass composite powders with high Pd content. Journal of Materials Science, 2012, 47, 7090-7098.	1.7	1
28	Characteristics of carbon-glass composite powders with spherical shape and submicron size prepared by spray pyrolysis from colloidal spray solution. Journal of the Ceramic Society of Japan, 2009, 117, 1277-1280.	0.5	0
29	Properties of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte formed from the nano-sized powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 752-756.	0.5	0