Xiaobin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11703305/publications.pdf Version: 2024-02-01

XIAORIN YANG

#	Article	IF	CITATIONS
1	Simply realizing "water diode―Janus membranes for multifunctional smart applications. Materials Horizons, 2017, 4, 701-708.	6.4	186
2	Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. Journal of Membrane Science, 2021, 618, 118525.	4.1	178
3	Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano, 2021, 15, 3500-3508.	7.3	175
4	Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chemical Engineering Journal, 2021, 412, 128673.	6.6	170
5	Building Nanoporous Metal–Organic Frameworks "Armor―on Fibers for High-Performance Composite Materials. ACS Applied Materials & Interfaces, 2017, 9, 5590-5599.	4.0	161
6	Segregation-induced in situ hydrophilic modification of poly (vinylidene fluoride) ultrafiltration membranes via sticky poly (ethylene glycol) blending. Journal of Membrane Science, 2018, 563, 22-30.	4.1	159
7	Porous Janus materials with unique asymmetries and functionality. Materials Today, 2021, 51, 626-647.	8.3	113
8	Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification. Journal of Membrane Science, 2018, 549, 67-74.	4.1	107
9	Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater. ACS Applied Materials & Interfaces, 2018, 10, 29982-29991.	4.0	101
10	A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chemical Engineering Science, 2020, 225, 115845.	1.9	100
11	Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Separation and Purification Technology, 2022, 285, 120383.	3.9	98
12	Rational design of poly(ethylene oxide) based membranes for sustainable CO ₂ capture. Journal of Materials Chemistry A, 2020, 8, 24233-24252.	5.2	94
13	Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials, 2018, 1, 32-55.	9.9	92
14	Interface-confined surface engineering constructing water-unidirectional Janus membrane. Journal of Membrane Science, 2019, 576, 9-16.	4.1	91
15	Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification. Journal of Membrane Science, 2019, 589, 117223.	4.1	90
16	Bio-inspired Ni ²⁺ -polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chemical Communications, 2017, 53, 6128-6131.	2.2	84
17	Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highly-efficient wastewater remediation. Journal of Membrane Science, 2019, 591, 117353.	4.1	76
18	Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes. Advanced Functional Materials, 2020, 30, 2002847.	7.8	74

XIAOBIN YANG

#	Article	IF	CITATIONS
19	Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by <i>in situ</i> asymmetry engineering for unprecedently ultrafast oil–water emulsion separation. Journal of Materials Chemistry A, 2020, 8, 16933-16942.	5.2	73
20	Polyphenol‧ensitized Atomic Layer Deposition for Membrane Interface Hydrophilization. Advanced Functional Materials, 2020, 30, 1910062.	7.8	70
21	Universal unilateral electro-spinning/spraying strategy to construct water-unidirectional Janus membranes with well-tuned hierarchical micro/nanostructures. Chemical Communications, 2020, 56, 478-481.	2.2	68
22	Codepositing Mussel-Inspired Nanohybrids onto One-Dimensional Fibers under "Green―Conditions for Significantly Enhanced Surface/Interfacial Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 4412-4420.	3.2	66
23	Water treatment based on atomically engineered materials: Atomic layer deposition and beyond. Matter, 2021, 4, 3515-3548.	5.0	66
24	Boosting the charge storage of layered double hydroxides derived from carbon nanotube-tailored metal organic frameworks. Electrochimica Acta, 2019, 301, 117-125.	2.6	57
25	Nanoporous framework "reservoir―maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture. Journal of Membrane Science, 2019, 570-571, 278-285.	4.1	55
26	Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti). Chemical Engineering Research and Design, 2019, 143, 90-99.	2.7	49
27	Mussel-/diatom-inspired silicified membrane for high-efficiency water remediation. Journal of Membrane Science, 2020, 597, 117753.	4.1	48
28	Mussel-inspired structure evolution customizing membrane interface hydrophilization. Journal of Membrane Science, 2020, 612, 118471.	4.1	40
29	Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. Journal of Membrane Science, 2020, 608, 118191.	4.1	39
30	Selfâ€Cleaning Membranes: Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes (Adv. Funct. Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070230.	7.8	36
31	Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Advanced Composites and Hybrid Materials, 2021, 4, 562-573.	9.9	25
32	Monovalent Cation Exchange Membranes with Janus Charged Structure for Ion Separation. Engineering, 2023, 25, 204-213.	3.2	17
33	Oxygen barrier property of synthesized polyacrylate coatings containing interâ€chain crossâ€linking architecture on <scp>PET</scp> film. Journal of Applied Polymer Science, 2021, 138, 50836.	1.3	3
34	Polyacrylate Decorating Poly(ethylene terephthalate) (PET) Film Surface for Boosting Oxygen Barrier Property. Coatings, 2021, 11, 1451.	1.2	2