
Hongqing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1170132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sintering behaviors, microstructures and dielectric properties of CaO-B2O3-SiO2 glass ceramic for LTCC application with various network modifiers content. Journal of Materials Science: Materials in Electronics, 2021, 32, 26655-26665.	2.2	6
2	Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 14069-14077.	2.2	9
3	Influence of binder content and the ratio of plasticizer to binder on tape casting and sintering performance of CaO–B2O3–SiO2–Al2O3 glass/Al2O3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 20022-20032.	2.2	2
4	Fabrication of low dielectric constant film based on CaO–B2O3–SiO2 glass/mullite composites for LTCC application. Journal of Materials Science: Materials in Electronics, 2020, 31, 8884-8892.	2.2	3
5	Co-firing compatibility of LTCC hetero-laminates with low and middle permittivity. Journal of Materials Science: Materials in Electronics, 2020, 31, 12282-12291.	2.2	1
6	Optimization of borosilicate glass/CaTiO ₃ â€TiO ₂ composite via altering prefiring temperature and particle size. International Journal of Applied Ceramic Technology, 2019, 16, 77-87.	2.1	3
7	The effects of Ca/Si ratio and B2O3 content on the dielectric properties of the CaO–B2O3–SiO2 glass–ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 14053-14060.	2.2	10
8	Manufacturing a High-Performance Dielectric Tape Based on a CaO-B2O3-SiO2 Glass–Ceramic. Journal of Electronic Materials, 2019, 48, 7452-7459.	2.2	1
9	Effects of Sm2O3/SrO/LiF doping and cooling rate on sintering characteristics and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 18818-18827.	2.2	2
10	Synthesis and low temperature densification of (Zr0.8Sn0.2)TiO4 ceramics with improved dielectric properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 5194-5202.	2.2	2
11	Sintering behaviour and microwave dielectric properties of MgO/Eu2O3-doped 0.65CaTiO3–0.35SmAlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9372-9378.	2.2	1
12	Sinterability and microwave dielectric properties of MgO/CeO2 doped 0.65CaTiO3–0.35SmAlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9855-9860.	2.2	1
13	Influence of Nd2O3/SrO additives on sintering characteristics and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 491-498.	2.2	3
14	The tape casting process for manufacturing lowâ€ŧemperature coâ€fired ceramic green sheets: A review. Journal of the American Ceramic Society, 2018, 101, 3874-3889.	3.8	45
15	Microwave dielectric properties of (1Ââ^'Âx)ZnNb2O6–xBa(Zn1/3Nb2/3)O3 compound ceramic with near zero temperature coefficient. Journal of Materials Science: Materials in Electronics, 2018, 29, 2170-2174.	2.2	6
16	Synthesis of 0.65CaTiO3–0.35SmAlO3 ceramics and effects of La2O3/SrO doping on their microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 21205-21212.	2.2	9
17	Modification of tape casting slurry via effective plasticization by butyl benzyl phthalate of CaO–SiO2–B2O3 glass–ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 20546-20553.	2.2	3
18	Influence of Sb2O3-ZnO additives on sintering characteristics and dielectric properties of (Mg0.95Ca0.05)TiO3 microwave ceramics. Ceramics International, 2018, 44, 17107-17112.	4.8	9

Hongqing Zhou

#	Article	IF	CITATIONS
19	Effect of ZnO/WO3 additives on sintering behavior and microwave dielectric properties of (Sr,Ca)TiO3–(Sm,Nd)AlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 9745-9750.	2.2	2
20	Effect of cooling rate on microstructure and microwave dielectric properties of MgO doped (Sr,Ca)TiO3-(Sm,Nd)AlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 6407-6412.	2.2	2
21	Optimization of tape casting process via surface modification of glass/Al2O3 powder. Journal of Materials Science: Materials in Electronics, 2016, 27, 9877-9884.	2.2	11
22	Effects of ZrO2–ZnO on the sintering behavior and microwave dielectric properties of 0.65CaTiO3–0.35SmAlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 12834-12839.	2.2	10
23	Influence of La2O3/SrO doping of (Zr0.8Sn0.2)TiO4 ceramics on their sintering behavior and microwave dielectric properties. Ceramics International, 2016, 42, 12306-12311.	4.8	12
24	Microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites with various borosilicate glasses. Journal of Materials Science: Materials in Electronics, 2016, 27, 517-521.	2.2	3
25	Microstructure, sintering and properties of CaO–Al2O3–B2O3–SiO2 glass/Al2O3 composites with different CaO contents. Journal of Materials Science: Materials in Electronics, 2016, 27, 5446-5451.	2.2	29
26	Effect of MgO, BaO and La2O3 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 6183-6187.	2.2	7
27	Sintering behavior and microwave dielectric properties of Y2O3–ZnO doped (Zr0.8Sn0.2)TiO4 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 7750-7754.	2.2	10
28	Low temperature sintering and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3–0.3(Sm0.75Nd0.25)AlO3 ceramics with LiF additive. Journal of Materials Science: Materials in Electronics, 2016, 27, 9078-9082.	2.2	2
29	Dielectric properties of 0.95(Mg0.98Zn0.02)TiO3–0.05CaTiO3 ceramic sintered by calcium borosilicate glass ceramic doping. Journal of Materials Science: Materials in Electronics, 2016, 27, 3839-3844.	2.2	2
30	Effects of Nb2O5–WO3 additive on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. Journal of Materials Science: Materials in Electronics, 2015, 26, 2397-2402.	2.2	7
31	Microwave dielectric properties of (1Ââ~'Âx)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 ceramics with near-zero temperature coefficient. Journal of Materials Science: Materials in Electronics, 2015, 26, 3515-3520.	2.2	8
32	Study on the hydrothermal synthesis of barium titanate nano-powders and calcination parameters. Journal of Materials Science: Materials in Electronics, 2015, 26, 8555-8562.	2.2	8
33	Effect of different forms of silica on sintering, microstructure and properties of borosilicate glass/Al2O3 composites. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 58-64.	1.0	1
34	Effect of ZnO–WO3 additives on sintering behavior and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics. Ceramics International, 2014, 40, 6899-6902.	4.8	18
35	Sintering, densification and crystallization of Ca–Al–B–Si–O glass/Al2O3 composites for LTCC application. Journal of Materials Science: Materials in Electronics, 2013, 24, 3985-3994.	2.2	25
36	Improved microwave dielectric properties of Mg4Nb2O9 ceramics with CaO–B2O3–SiO2 glass additions. Journal of Materials Science: Materials in Electronics, 2013, 24, 3546-3550.	2.2	15

Hongqing Zhou

#	Article	IF	CITATIONS
37	Low temperature sintering and properties of Ca–Al–B–Si–O glass/ceramic composites with various ceramic fillers. Journal of Materials Science: Materials in Electronics, 2013, 24, 2161-2168.	2.2	6
38	Study on properties of Ca2Zn4Ti15O36 ceramics with CaO-B2O3-SiO2 glass. Journal of Materials Science: Materials in Electronics, 2013, 24, 1090-1094.	2.2	10
39	Low temperature sintering and dielectric properties of Ca-Ba-Al-B-Si-O glass/Al2O3 composites for LTCC applications. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1085-1090.	1.0	7
40	Effects of borosilicate glass additions on microstructures and magnetic properties of low temperature co-fired NiCuZn ferrites. Journal of Materials Science: Materials in Electronics, 2013, 24, 4713-4717.	2.2	8
41	Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses. Journal of Materials Science: Materials in Electronics, 2012, 23, 2130-2139.	2.2	20
42	Preparation and properties of crystallizable Glass/Al2O3 composites for LTCC material. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 1174-1178.	1.0	2
43	Study on properties of forsterite/cordierite ceramic composites. Journal of Materials Science: Materials in Electronics, 2010, 21, 231-235.	2.2	5
44	Microstructure and microwave dielectric characteristics of CaO–B2O3–SiO2 glass ceramics. Journal of Materials Science: Materials in Electronics, 2009, 20, 1135-1139.	2.2	19
45	Effect of MnCO3 doping on the dielectric and tunable properties of BSTO/MgO composite for phased array antennas. Journal of Materials Science: Materials in Electronics, 2007, 18, 985-989.	2.2	9
46	Preparation and microstrutures of BSTO/MgO ferroelectric materials for phase shift. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 122-125.	1.0	1
47	Preparation and properties of low-temperature co-fired ceramic of CaO–SiO2–B2O3 system. Journal of Materials Science: Materials in Electronics, 2006, 17, 637-641.	2.2	34
48	Dielectric properties of BSTO/MgO ceramic composites. Journal of Materials Science: Materials in Electronics, 2006, 17, 347-352.	2.2	4