Pravir Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1170047/publications.pdf

Version: 2024-02-01

185998 161609 3,142 85 28 54 h-index citations g-index papers 85 85 85 4430 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase. Journal of Biological Chemistry, 2004, 279, 45935-45941.	1.6	468
2	Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity, 2021, 25, 1315-1360.	2.1	423
3	Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1[W]. Plant Cell, 2004, 16, 1521-1535.	3.1	196
4	The Insulin/Akt Signaling Pathway Is Targeted by Intracellular \hat{l}^2 -Amyloid. Molecular Biology of the Cell, 2009, 20, 1533-1544.	0.9	184
5	CHIP and HSPs interact with \hat{I}^2 -APP in a proteasome-dependent manner and influence \hat{AI}^2 metabolism. Human Molecular Genetics, 2007, 16, 848-864.	1.4	140
6	Differential Effects of Mitochondrial Heat Shock Protein 60 and Related Molecular Chaperones to Prevent Intracellular \hat{I}^2 -Amyloid-induced Inhibition of Complex IV and Limit Apoptosis. Journal of Biological Chemistry, 2006, 281, 29468-29478.	1.6	119
7	p38 MAPK and PI3K/AKT Signalling Cascades inParkinson's Disease. International Journal of Molecular and Cellular Medicine, 2015, 4, 67-86.	1.1	117
8	Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1132-1146.	1.8	76
9	Parkin reverses intracellular βâ€amyloid accumulation and its negative effects on proteasome function. Journal of Neuroscience Research, 2010, 88, 167-178.	1.3	75
10	Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience, 2012, 220, 291-301.	1.1	69
11	Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. Journal of Alzheimer's Disease, 2015, 48, 891-917.	1.2	64
12	Ion Channels in Neurological Disorders. Advances in Protein Chemistry and Structural Biology, 2016, 103, 97-136.	1.0	62
13	Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience, 2013, 254, 379-394.	1.1	61
14	Autophagy and apoptosis cascade: which is more prominent in neuronal death?. Cellular and Molecular Life Sciences, 2021, 78, 8001-8047.	2.4	58
15	Crossâ€functional E3 ligases Parkin and Câ€terminus Hsp70â€interacting protein in neurodegenerative disorders. Journal of Neurochemistry, 2012, 120, 350-370.	2.1	52
16	Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sciences, 2020, 243, 117278.	2.0	50
17	Combinatorial therapy in tumor microenvironment: Where do we stand?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188585.	3.3	48
18	Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vascular Cell, 2011, 3, 26.	0.2	45

#	Article	IF	Citations
19	Tau Phosphorylation, Molecular Chaperones, and Ubiquitin E3 Ligase: Clinical Relevance in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 341-361.	1.2	45
20	Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Research Reviews, 2021, 68, 101336.	5.0	45
21	Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. Journal of Alzheimer's Disease, 2018, 62, 15-38.	1.2	41
22	CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of Advanced Research, 2022, 40, 207-221.	4.4	37
23	Transgenic expression of Bâ€APP in fastâ€ŧwitch skeletal muscle leads to calcium dyshomeostasis and IBM″ike pathology. FASEB Journal, 2006, 20, 2165-2167.	0.2	36
24	Can luteolin be a therapeutic molecule for both colon cancer and diabetes?. Briefings in Functional Genomics, 2019, 18, 230-239.	1.3	36
25	Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. Journal of Translational Medicine, 2017, 15, 185.	1.8	33
26	Naringenin and quercetin reverse the effect of hypobaric hypoxia and elicit neuroprotective response in the murine model. Brain Research, 2012, 1481, 59-70.	1.1	32
27	Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 324-336.	1.8	31
28	Combinatorial Antitumor Effect of Naringenin and Curcumin Elicit Angioinhibitory Activities In Vivo. Nutrition and Cancer, 2012, 64, 714-724.	0.9	30
29	Comparative study of anti-angiogenic activities of luteolin, lectin and lupeol biomolecules. Journal of Translational Medicine, 2015, 13, 307.	1.8	28
30	Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Research Reviews, 2020, 61, 101078.	5.0	27
31	Stress-Induced Synaptic Dysfunction andÂNeurotransmitter Release inÂAlzheimer's Disease: Can Neurotransmitters and Neuromodulators beÂPotential Therapeutic Targets?. Journal of Alzheimer's Disease, 2017, 57, 1017-1039.	1.2	24
32	Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Research Reviews, 2022, 76, 101579.	5.0	24
33	Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochemistry International, 2021, 148, 105115.	1.9	23
34	Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochemistry International, 2022, 156, 105327.	1.9	21
35	Unboxing the molecular modalities of mutagens in cancer. Environmental Science and Pollution Research, 2022, 29, 62111-62159.	2.7	19
36	Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. Environmental Science and Pollution Research, 2022, 29, 62160-62207.	2.7	18

3

#	Article	IF	Citations
37	Cellular Toxicity of Mesoporous Silica Nanoparticle in SHSY5Y and BMMNCs Cell. Pharmaceutical Nanotechnology, 2019, 6, 245-252.	0.6	17
38	Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Human Molecular Genetics, 2014, 23, 3681-3694.	1.4	16
39	$\hat{A^2}$, Tau, and $\hat{I}\pm$ -Synuclein aggregation and integrated role of PARK2 in the regulation and clearance of toxic peptides. Neuropeptides, 2019, 78, 101971.	0.9	16
40	FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. Journal of Chemical Neuroanatomy, 2021, 116, 102012.	1.0	16
41	Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in Molecular Biology and Translational Science, 2022, , 57-100.	0.9	15
42	Identification of novel class I and class IIb histone deacetylase inhibitor for Alzheimer's disease therapeutics. Life Sciences, 2020, 256, 117912.	2.0	13
43	Histone deacetylase in neuropathology. Advances in Clinical Chemistry, 2021, 104, 151-231.	1.8	13
44	Therapeutic Targeting of Repurposed Anticancer Drugs in Alzheimer's Disease: Using the Multiomics Approach. ACS Omega, 2021, 6, 13870-13887.	1.6	13
45	Design, synthesis and biological evaluation of methyl-2-(2-(5-bromo) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5	50 427 Td (1.7	(benzoxazolo 12
46	Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochemistry International, 2020, 140, 104841.	1.9	12
47	An integrated approach to unravel a putative crosstalk network in Alzheimer's disease and Parkinson's disease. Neuropeptides, 2020, 83, 102078.	0.9	12
48	Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neuroscience and Biobehavioral Reviews, 2022, 132, 976-997.	2.9	11
49	Modified benzoxazolone (ABOâ€AA) based single photon emission computed tomography (SPECT) probes for 18 kDa translocator protein. Drug Development Research, 2019, 80, 741-749.	1.4	9
50	Computational Analysis Indicates That PARP1 Acts as a Histone Deacetylases Interactor Sharing Common Lysine Residues for Acetylation, Ubiquitination, and SUMOylation in Alzheimer's and Parkinson's Disease. ACS Omega, 2021, 6, 5739-5753.	1.6	9
51	Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sciences, 2021, 285, 120006.	2.0	9
52	Synergy of bone marrow transplantation and curcumin ensue protective effects at early onset of diabetes in mice 在早期å•病的糖尿病å°é¼ä¸ä½;ç°¨éª'é«"ç§»æ#Œå§œé»"ç´è¾å•æ²»ç——å…æœç	‰aa€E俜	
53	Comparative evaluation of $\langle \sup 99m \rangle 99m $ sup-Tc-MBIP-X/ $\langle \sup 11 \rangle 11 $ Sup- $[C]$ MBMP for visualization of 18 kDa translocator protein. New Journal of Chemistry, 2019, 43, 11288-11295.	1.4	8
54	Precision Oncology, Signaling, and Anticancer Agents in Cancer Therapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 433-468.	0.9	7

#	Article	IF	Citations
55	Cancer Fighting SiRNA-RRM2 Loaded Nanorobots. Pharmaceutical Nanotechnology, 2020, 8, 79-90.	0.6	7
56	MOLECULAR DOCKING STUDIES FOR THE COMPARATIVE ANALYSIS OF DIFFERENT BIOMOLECULES TO TARGET HYPOXIA INDUCIBLE FACTOR-1α. International Journal of Applied Pharmaceutics, 2017, 9, 83.	0.3	6
57	Design, Synthesis, and In Silico Evaluation of Methyl 2-(2-(5-Bromo/chloro-2-oxobenzoxazol-3(2H)-yl)-acetamido)-3-phenylpropanoate for TSPO Targeting. Radiochemistry, 2020, 62, 107-118.	0.2	6
58	Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. Journal of Pharmacy and Pharmacology, 2022, 74, 461-484.	1.2	6
59	Role of Wnt-p53-Nox Signaling Pathway in Cancer Development and Progression. British Journal of Medicine and Medical Research, 2015, 8, 651-676.	0.2	6
60	Integrated Mechanism of Lysine 351, PARK2, and STUB1 in $\hat{Al^2}PP$ Ubiquitination. Journal of Alzheimer's Disease, 2019, 68, 1125-1150.	1.2	5
61	In silico designing of putative peptides for targeting pathological protein Htt in Huntington's disease. Heliyon, 2021, 7, e06088.	1.4	5
62	An In-Silico Investigation of Key Lysine Residues and Their Selection for Clearing off $A\hat{l}^2$ and Holo- $A\hat{l}^2$ PP Through Ubiquitination. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 584-596.	2.2	4
63	Role of Oxidative Stress, ER Stress and Ubiquitin Proteasome System in Neurodegeneration. MOJ Cell Science & Report, 2014, $1,\ldots$	0.1	4
64	CREB1 ^{K292} and HINFP ^{K330} as Putative Common Therapeutic Targets in Alzheimer's and Parkinson's Disease. ACS Omega, 2021, 6, 35780-35798.	1.6	4
65	Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. Journal of Membrane Biology, 2014, 247, 1083-1127.	1.0	2
66	AN IN SILICO STUDY OF NARINGENIN-MEDIATED NEUROPROTECTION IN PARKINSON'S DISEASE. Asian Journa of Pharmaceutical and Clinical Research, 2017, 10, 171.	0.3	2
67	VEGF/CDK2 are involved in diabetic organ regeneration. Biochemical and Biophysical Research Communications, 2020, 529, 1094-1100.	1.0	2
68	Identification of Putative LRRK2 Inhibitors in the Pathogensis of Parkinson's Disease: A Drug-Repurposing Approach., 2021,,.		2
69	Epigenetic Post transcriptional Mutation in Neuro-Oncology. , 2016, , 177-205.		1
70	Epigenetics and Angiogenesis in Cancer. , 2016, , 145-176.		1
71	MOLECULAR DOCKING STUDY OF NEUROPROTECTIVEPLANT-DERIVED BIOMOLECULES IN PARKINSON'S DISEASE. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 149.	0.3	1
72	BIOMOLECULES MEDIATED TARGETING OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN NEURONAL DYSFUNCTION: AN IN SILICO APPROACH. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 96.	0.3	1

#	Article	IF	CITATIONS
73	Mitochondrial dysfunction in metabolic disorders. , 2021, , 91-137.		1
74	Discovery of Novel Compounds Targeting DJ-1 as Neuroprotectants for Parkinson's Disease by Virtual Screening and In Silico Method. Current Computer-Aided Drug Design, 2021, 17, 351-359.	0.8	1
75	Obesity and Neurodegeneration. Advances in Obesity Weight Management & Control, 2015, 2, .	0.4	1
76	Regulation of Hypoxia Inducible Factor via Histone Deacetylase 3 Inhibitor Valproic Acid: A computational Study between HIF-1a, Histone Deacetylase, and Valproic Acid., 2021,,.		1
77	Epigenesis in Colorectal Cancer: A Lethal Change in the Cell. , 2016, , 123-144.		O
78	NEUROPROTECTIVE ROLE OF BIMOCLOMOL IN ECTOPIC CELL CYCLE IN PARKINSON'S DISEASE: NEW INSIGHTS. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 180.	0.3	0
79	Mitochondrial dysfunction and autophagy in neurodegeneration., 2021,, 139-178.		O
80	Protective effect of transplanted bone marrow mononuclearcells (BMMNCs) in organ damage caused due to streptozotocin (STZ) induced diabetes. African Journal of Pharmacy and Pharmacology, 2012, 6, .	0.2	0
81	Parkinson's Disease: An Overview and Role of Glutamate and its Receptors: Glutamate receptor based therapy as an alternate way to treat Parkinson's., 2021,,.		O
82	Is Artificial Intelligence a Helping Hand for the Future of Neurosurgery?. , 2021, , .		0
83	VEGF and its role in the treatment of Diabetes and Alzhiemer's Disease. , 2021, , .		0
84	Crosstalk Between Ubiquitination and Acetylation in the Parkinson's Disease. , 2022, , .		0
85	Putative micro-RNAs in the pathogenesis of Alzheimer's diseases. , 2022, , .		O