Teketel Yohannes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11699825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of cotton textile industry wastewater treatment with electrocoagulation process: performance, mineralization, and kinetic study. Water Science and Technology, 2022, 85, 1549-1567.	2.5	9
2	Role of additives and surface passivation on the performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 2022, 11, 47-70.	3.6	18
3	Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Chemosphere, 2022, 302, 134706.	8.2	14
4	Effect of solvent additives and P3HT on PDTSTTz/PCBM-based bulk heterojunction solar cells. Journal of Photonics for Energy, 2015, 5, 057209.	1.3	11
5	Effect of Side Chains on Charge Transport of Anthraceneâ€Based PPE–PPV Copolymers. Macromolecular Chemistry and Physics, 2014, 215, 452-457.	2.2	4
6	Investigation of photodegradation in polymer solar cells blended with different fullerenes derivatives. Solar Energy Materials and Solar Cells, 2014, 123, 150-158.	6.2	21
7	Worldwide outdoor round robin study of organic photovoltaic devices and modules. Solar Energy Materials and Solar Cells, 2014, 130, 281-290.	6.2	23
8	Effect of Varying Thiophene Units on Chargeâ€Transport and Photovoltaic Properties of Poly(phenylene) Tj ETQ 215, 1473-1484.	q0 0 0 rgE 2.2	3T /Overlock 1 3
9	Tuning the properties of an anthracene-based PPE-PPV copolymer by fine variation of its macromolecular parameters. RSC Advances, 2013, 3, 6972.	3.6	9
10	Mobility and photovoltaic performance studies on polymer blends: effects of side chains volume fraction. Journal of Materials Chemistry, 2011, 21, 2594-2600.	6.7	40
11	Bis-EH-PFDTBT:PCBM solar cells: A compositional, thickness, and light-dependent study. Journal of Applied Physics, 2011, 110, 113106.	2.5	7
12	Synthesis and optical and transport properties of a phenylâ€substituted polythiophene. Journal of Polymer Science Part A, 2011, 49, 2693-2699.	2.3	1
13	Investigation of hole-mobility in a polyfluorene copolymer by admittance spectroscopy. Applied Physics Letters, 2010, 96, .	3.3	9
14	Hole-transport properties of a low-band gap alternating polyfluorene. Journal of Applied Physics, 2010, 108, 023709.	2.5	2
15	In situ FTIR spectroelectrochemical characterization of n- and p-dopable phenyl-substituted polythiophenes. Physical Chemistry Chemical Physics, 2009, 11, 6283.	2.8	5
16	A comparative study on liquid-state photoelectrochemical cells based on poly(3-hexylthiophene) and a composite film of poly(3-hexylthiophene) and nanocrystalline titanium dioxide. Synthetic Metals, 2007, 157, 75-79.	3.9	4
17	Photoelectrochemical solar energy conversion based on blend of poly(3-hexylthiophene) and fullerene. Solar Energy Materials and Solar Cells, 2006, 90, 3508-3519.	6.2	11
18	Solid-state photoelectrochemical device based on poly(3-hexylthiophene) and an ion conducting polymer electrolyte, amorphous poly(ethylene oxide) complexed with I3â^'/Iâ^' redox couple. Solar Energy Materials and Solar Cells, 2004, 83, 301-310.	6.2	14

Teketel Yohannes

#	Article	IF	CITATIONS
19	All-solid-state photoelectrochemical energy conversion with the conjugated polymer poly[3-(4-octylphenyl)-2,2′-bithiophene]. Synthetic Metals, 1999, 107, 97-105.	3.9	31
20	Infrared Photospectroelectrochemistry of Germanium/Pedot/Electrolyte Interfaces. Materials Research Society Symposia Proceedings, 1999, 598, 345.	0.1	0
21	In Situ Attenuated Total Reflection FTIR Spectroelectrochemistry Of Polybenzimidazobenzophenanthroline (BBL). Materials Research Society Symposia Proceedings, 1999, 598, 355.	0.1	0
22	Polymer electrolytes in optical devices. Electrochimica Acta, 1998, 43, 1615-1621.	5.2	8
23	Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte. Solar Energy Materials and Solar Cells, 1998, 51, 193-202.	6.2	94
24	Electrochemical and spectroscopic characteristics of copolymers electrochemically synthesized from 3-methylthiophene and 3,4-ethylenedioxy thiophene. Synthetic Metals, 1997, 88, 15-21.	3.9	48
25	Photodiode performance and nanostructure of polythiophene/C60blends. Advanced Materials, 1997, 9, 1164-1168.	21.0	183
26	Polymer-electrolyte-based photoelectrochemical solar energy conversion with poly(3-methylthiophene) photoactive electrode. Synthetic Metals, 1996, 82, 215-220.	3.9	46
27	Photoelectrochemical Energy Conversion at the Conjugated Polymer/Redox Polymer Electrolyte Interface. Journal of the Electrochemical Society, 1996, 143, 2310-2314.	2.9	27