Yanzhao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1169858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Monodisperse CeO ₂ Hollow Spheres Assembled by Nano-octahedra. Crystal Growth and Design, 2010, 10, 291-295.	3.0	121
2	Mesoporous CeO ₂ Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications. European Journal of Inorganic Chemistry, 2010, 2010, 3354-3359.	2.0	110
3	The Effect of Exposed Facets of Ceria to the Nickel Species in Nickel-Ceria Catalysts and Their Performance in a NO + CO Reaction. ACS Applied Materials & Interfaces, 2015, 7, 26839-26849.	8.0	94
4	Zn-doped In2O3nanostructures: preparation, structure and gas-sensing properties. CrystEngComm, 2012, 14, 1135-1142.	2.6	87
5	Copper doped ceria nanospheres: surface defects promoted catalytic activity and a versatile approach. Journal of Materials Chemistry A, 2014, 2, 5662.	10.3	85
6	A facile hydrothermal synthesis of 3D flowerlike CeO2via a cerium oxalate precursor. Journal of Materials Chemistry A, 2013, 1, 6942.	10.3	68
7	Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy, 2021, 85, 106011.	16.0	68
8	Oneâ€Pot Synthesis of Mnâ€Doped CeO ₂ Nanospheres for CO Oxidation. European Journal of Inorganic Chemistry, 2013, 2013, 4443-4449.	2.0	58
9	Frogspawn inspired hollow Fe ₃ C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale, 2019, 11, 21532-21541.	5.6	58
10	Fabrication of three dimensional CeO2 hierarchical structures: Precursor template synthesis, formation mechanism and properties. CrystEngComm, 2011, 13, 2418.	2.6	54
11	Extraction of gold(III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion. Journal of Hazardous Materials, 2011, 186, 2166-2170.	12.4	54
12	Extraction and Stripping of Platinum from Hydrochloric Acid Medium by Mixed Imidazolium Ionic Liquids. Industrial & Engineering Chemistry Research, 2015, 54, 705-711.	3.7	50
13	Mesoporous-shelled CeO2 hollow nanospheres synthesized by a one-pot hydrothermal route and their catalytic performance. CrystEngComm, 2013, 15, 7769.	2.6	44
14	Solvothermal synthesis of 1D nanostructured Mn ₂ O ₃ : effect of Ni ²⁺ and Co ²⁺ substitution on the catalytic activity of nanowires. RSC Advances, 2015, 5, 66271-66277.	3.6	44
15	Microemulsion Extraction of Cold(III) from Hydrochloric Acid Medium Using Ionic Liquid as Surfactant and Extractant. Industrial & Engineering Chemistry Research, 2012, 51, 16438-16443.	3.7	43
16	lonic-Liquid-Type Imidazolium Gemini Surfactant Based Water-in-Oil Microemulsion for Extraction of Gold from Hydrochloric Acid Medium. Industrial & Engineering Chemistry Research, 2016, 55, 2790-2797.	3.7	43
17	A mild solution strategy for the synthesis of mesoporous CeO2 nanoflowers derived from Ce(HCOO)3. CrystEngComm, 2011, 13, 4950.	2.6	40
18	Separation of Pt(IV), Pd(II), Ru(III), and Rh(III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids. Separation Science and Technology, 2018, 53, 2064-2073.	2.5	37

#	Article	IF	CITATIONS
19	One-step synthesis of Ni-doped SnO ₂ nanospheres with enhanced lithium ion storage performance. New Journal of Chemistry, 2015, 39, 130-135.	2.8	36
20	Phase-controlled synthesis of monodispersed porous In2O3 nanospheres via an organic acid-assisted hydrothermal process. CrystEngComm, 2011, 13, 5011.	2.6	35
21	Recovery of gold from hydrochloric medium by deep eutectic solvents based on quaternary ammonium salts. Hydrometallurgy, 2019, 188, 264-271.	4.3	35
22	Controlled Synthesis of Au Chiral Propellers from Seeded Growth of Au Nanoplates for Chiral Differentiation of Biomolecules. Journal of Physical Chemistry C, 2020, 124, 24306-24314.	3.1	35
23	Extraction of Au(III) by ionic liquid from hydrochloric acid medium. Separation and Purification Technology, 2013, 120, 367-372.	7.9	33
24	Unusual properties of nanostructured Ce1â´'xCoxO2â´'y, Ce1â´'xNixO2â´'y and Ce1â´'(x+y)CoxNiyO2â´'z: structural studies and catalytic activity. CrystEngComm, 2013, 15, 1370.	2.6	33
25	Mesoporous CeO ₂ nanoparticles assembled by hollow nanostructures: formation mechanism and enhanced catalytic properties. CrystEngComm, 2014, 16, 8777-8785.	2.6	31
26	Facile synthesis of Mn-doped Fe ₂ O ₃ nanostructures: enhanced CO catalytic performance induced by manganese doping. New Journal of Chemistry, 2016, 40, 3491-3498.	2.8	29
27	Recovery of Au(III) from Acidic Chloride Media by Homogenous Liquid–Liquid Extraction with UCST-Type Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 19975-19983.	6.7	29
28	Facile synthesis of novel MnOx nano-structures and their catalytic performance on CO oxidation. CrystEngComm, 2013, 15, 5150.	2.6	28
29	The promoting influence of nickel species in the controllable synthesis and catalytic properties of nickel–ceria catalysts. Catalysis Science and Technology, 2016, 6, 2427-2434.	4.1	28
30	Extraction of platinum(IV) by hydrophobic deep eutectic solvents based on trioctylphosphine oxide. Hydrometallurgy, 2021, 199, 105521.	4.3	28
31	Controllable synthesis of $\hat{1}^3$ -AlOOH micro/nanoarchitectures via a one-step solution route. CrystEngComm, 2011, 13, 2445.	2.6	24
32	Designed synthesis and formation mechanism of CeO ₂ hollow nanospheres and their facile functionalization with Au nanoparticles. CrystEngComm, 2015, 17, 4850-4858.	2.6	24
33	Selone behavior towards palladium(<scp>ii</scp>) extraction with hydrophobic ionic liquids and mechanism studies. RSC Advances, 2015, 5, 63087-63094.	3.6	24
34	Extraction behaviour and mechanism of Pt(<scp>iv</scp>) and Pd(<scp>ii</scp>) by liquid–liquid extraction with an ionic liquid [HBBIm]Br. Dalton Transactions, 2017, 46, 7210-7218.	3.3	24
35	Gold(III) separation from acidic medium by amine-based ionic liquid. Journal of Molecular Liquids, 2020, 304, 112735.	4.9	24
36	The application of ionic liquid-based system in the extraction of palladium: synthesis, characterization and computer calculation of palladium complexes. RSC Advances, 2014, 4, 57009-57015.	3.6	23

#	Article	IF	CITATIONS
37	Facile Preparation of M <i>ⁿ</i> ⁺ â€Doped (M = Cu, Co, Ni, Mn) Hierarchically Mesoporous CeO ₂ Nanoparticles with Enhanced Catalytic Activity for CO Oxidation. European Journal of Inorganic Chemistry, 2015, 2015, 969-976.	2.0	23
38	Extraction of palladium (II) by a silicone ionic liquid-based microemulsion system from chloride medium. Separation and Purification Technology, 2016, 169, 289-295.	7.9	22
39	Insight Investigation of Active Palladium Surface Sites in Palladium-Ceria Catalysts for NO + CO Reaction. ACS Applied Materials & Interfaces, 2018, 10, 13614-13624.	8.0	22
40	Ceria-based peroxidase-mimicking nanozyme with enhanced activity: A coordination chemistry strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125715.	4.7	21
41	Zrâ€doped CeO ₂ Hollow slightlyâ€truncated nanoâ€octahedrons: Oneâ€pot synthesis, characterization and their application in catalysis of CO oxidation. Crystal Research and Technology, 2014, 49, 383-392.	1.3	20
42	Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid. Journal of Molecular Liquids, 2019, 293, 111040.	4.9	20
43	Synthesis of Co/Ni Unitary―or Binaryâ€Doped CeO ₂ Mesoporous Nanospheres and Their Catalytic Performance for CO Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 5370-5377.	2.0	18
44	Construction of Ce(OH) ₄ nanostructures from 1D to 3D by a mechanical force-driven method. CrystEngComm, 2015, 17, 2690-2697.	2.6	17
45	Extraction and separation of multiple platinum group metals from hydrochloric acid solution with sole 1-hexyl-3-methylimidazole-2-thione using microextraction method. Hydrometallurgy, 2017, 174, 167-174.	4.3	17
46	Behavior and mechanism investigation of separating Pt and Ir by liquid–liquid extraction using a mixed [C ₆ bet]Br/[C ₆ mim][NTF ₂] system. New Journal of Chemistry, 2017, 41, 8985-8992.	2.8	17
47	Recovery of Ru(III) from hydrochloric acid by cloud point extraction with 2-Mercaptobenzothiazole-functionalized ionic liquid. Chemical Engineering Journal, 2017, 308, 370-376.	12.7	17
48	Enhanced Catalytic Performance of (CuO) _{<i>x</i>/i>} /Ce _{0.9} Cu _{0.1} O ₂ Nanospheres: Combined Contribution of the Synergistic Effect and Surface Defects. ChemPlusChem, 2015, 80, 886-894.	2.8	16
49	Gold Extraction through Vesicles Self-Assembled by Cationic Gemini Surfactant and Sodium Deoxycholate. Industrial & Engineering Chemistry Research, 2016, 55, 8207-8214.	3.7	16
50	Mn ₃ O ₄ doped with highly dispersed Zr species: a new non-noble metal oxide with enhanced activity for three-way catalysis. New Journal of Chemistry, 2016, 40, 10108-10115.	2.8	16
51	Kinetics of Oxidation Processes on Lead Electrode in  H 2 SO 4 : III. To Study the Growth of the by Linear Sweep Voltammetry. Journal of the Electrochemical Society, 1996, 143, 1157-1160.	PbQ Layer	15
52	The optimization of aqueous twoâ€phase extraction of lysozyme from crude hen egg white using response surface methodology. Journal of Chemical Technology and Biotechnology, 2013, 88, 415-421.	3.2	15
53	Template-free synthesis of core–shell CeO2 nanospheres. RSC Advances, 2014, 4, 11357.	3.6	15
54	Hierarchical polymorphic MnCO ₃ series induced by cobalt doping via a one-pot hydrothermal route for CO catalytic oxidation. RSC Advances, 2015, 5, 33615-33622.	3.6	15

#	Article	IF	CITATIONS
55	Solvent extraction of palladium(<scp>ii</scp>) with newly synthesized asymmetric branched alkyl sulfoxides from hydrochloric acid. RSC Advances, 2015, 5, 66376-66383.	3.6	15
56	Effect of spacer length of ionic liquid-type imidazolium gemini surfactant-based water-in-oil microemulsion for the extraction of gold from hydrochloric acid. New Journal of Chemistry, 2017, 41, 6180-6186.	2.8	15
57	One-step synthesis of samarium-doped ceria and its CO catalysis. Bulletin of Materials Science, 2015, 38, 1149-1154.	1.7	14
58	Titanium tetrachloride for silver nanoparticle-humic acid composite contaminant removal in coagulation-ultrafiltration hybrid process: floc property and membrane fouling. Environmental Science and Pollution Research, 2017, 24, 1757-1768.	5.3	14
59	Pretreatment Effect on Ceria‧upported Gold Nanocatalysts for CO Oxidation: Importance of the Gold–Ceria Interaction. Energy Technology, 2018, 6, 379-390.	3.8	14
60	Faceted Colloidal Au/Fe ₃ O ₄ Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties. Journal of Physical Chemistry C, 2020, 124, 14775-14786.	3.1	14
61	Magnesium Aluminum Spinel as an Acid–Base Catalyst for Transesterification of Diethyl Carbonate with Dimethyl Carbonate. Catalysis Letters, 2014, 144, 1602-1608.	2.6	13
62	A 2-mercaptobenzothiazole-functionalized ionic liquid for selective extraction of Pd(<scp>ii</scp>) from a hydrochloric acid medium. RSC Advances, 2016, 6, 63006-63012.	3.6	13
63	Stable monodisperse colloidal spherical gold nanoparticles formed by an imidazolium gemini surfactant-based water-in-oil microemulsion with excellent catalytic performance. RSC Advances, 2016, 6, 28156-28164.	3.6	13
64	Homogenous Liquid–Liquid Extraction of Au(III) from Acidic Medium by Ionic Liquid Thermomorphic Systems. ACS Sustainable Chemistry and Engineering, 2021, 9, 4894-4902.	6.7	13
65	Preparation of CeO2 hollow spheres via a surfactant-assisted solvothermal route. Journal of Materials Science, 2010, 45, 4158-4162.	3.7	12
66	The effect of copper species in copper-ceria catalysts: structure evolution and enhanced performance in CO oxidation. RSC Advances, 2016, 6, 46966-46971.	3.6	12
67	CeO ₂ decorated CuO hierarchical composites as inverse catalyst for enhanced CO oxidation. RSC Advances, 2016, 6, 102931-102937.	3.6	12
68	Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Communications Chemistry, 2019, 2, .	4.5	12
69	Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Trisâ€Amide Triarylamines Supramolecular Networks. Small, 2020, 16, 2005701.	10.0	10
70	A simple and practical synthesis route for preparation of Li ₃ V ₂ (PO ₄) ₃ /C by the rheological phase method using composite chelating reagents. New Journal of Chemistry, 2014, 38, 2265-2268.	2.8	9
71	Revealing the Role of Chain Length of Ligands on Gold Nanoparticles Surface in the Process for Catalysis Reduction of 4-Nitrophenol. Catalysis Letters, 2019, 149, 2110-2118.	2.6	9
72	Extraction of gold(III) using novel gemini-type benzimidazole ionic liquid from hydrochloric acid medium. Separation and Purification Technology, 2021, 276, 119312.	7.9	9

Yanzhao Yang

#	Article	IF	CITATIONS
73	Extraction and separation on Au(III) and Pt(IV) from HCl media using novel piperazine-based ionic liquid as an ionic exchanger. Journal of Molecular Liquids, 2022, 353, 118846.	4.9	9
74	Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 3812-3817.	6.7	8
75	The contributions of distinct Pd surface sites in palladium–ceria catalysts to low-temperature CO oxidation. CrystEngComm, 2020, 22, 1251-1260.	2.6	8
76	Superamphiphilic Chitosan Cryogels for Continuous Flow Separation of Oil-In-Water Emulsions. ACS Omega, 2022, 7, 5937-5945.	3.5	8
77	Toward green and efficient recycling of Au(III), Pd(II) and Pt(IV) from acidic medium using UCST-type ionic liquid. Separation and Purification Technology, 2022, 298, 121620.	7.9	8
78	Synthesis of catalytically active bimetallic nanoparticles within solution-processable metal–organic-framework scaffolds. CrystEngComm, 2019, 21, 3954-3960.	2.6	7
79	ESP–ALIE Analysis as a Theoretical Tool for Identifying the Coordination Atoms of Possible Multisite Extractants: Validation and Prediction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14353-14364.	6.7	7
80	Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials. CrystEngComm, 2020, 22, 4790-4796.	2.6	7
81	Extraction and separation of Pd(<scp>ii</scp>)/Pt(<scp>iv</scp>) by neutral sulfur-containing extractant from hydrochloric acid medium. New Journal of Chemistry, 2021, 45, 19467-19475.	2.8	7
82	Synthesis and characterization of 5-bromo-3-sec-butyl-6-methyluracil. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 152-156.	0.4	6
83	Behavior, mechanism, and equilibrium studies of rhodium(<scp>i</scp>) extraction from hydrochloric acid with HMImT. New Journal of Chemistry, 2017, 41, 10054-10061.	2.8	6
84	Equilibrium, thermodynamics and kinetics study on Au(III) extraction by gemini surfactant with different spacer length. Separation Science and Technology, 2019, 54, 985-995.	2.5	6
85	Control of the sizes of zinc sulfide particles by extractant. Journal of Materials Science, 2004, 39, 659-661.	3.7	5
86	Determination of long-chained alkylimidazolium ionic liquids based on the hypochromic effect. Analytical Methods, 2014, 6, 3758.	2.7	5
87	Influence of Chitosan on the Microstructured Au/CeO2 Catalyst: An Enhanced Catalytic Performance for CO Oxidation. Catalysis Letters, 2017, 147, 1322-1332.	2.6	5
88	Behavior, mechanism and equilibrium studies of Au(<scp>iii</scp>) extraction with an ionic liquid [C ₄ -6-C ₄ BIm]Br ₂ . Dalton Transactions, 2020, 49, 504-510.	3.3	5
89	ZnO Nanoparticles Prepared by Thermal Decomposition of Batch Supercritical Antisolvent Processed Zinc Acetate. Journal of Chemical Engineering of Japan, 2009, 42, 117-125.	0.6	4
90	Monodisperse CeO ₂ subâ€micro spherical aggregates with controllable building blocks. Crystal Research and Technology, 2011, 46, 201-204.	1.3	4

#	Article	IF	CITATIONS
91	Bimetallic Oxide Hollow Structures Induced by Surface Coordination of ZIFâ€67. European Journal of Inorganic Chemistry, 2019, 2019, 4920-4926.	2.0	4
92	Separation of Gallium and Aluminum from HCl Solution by Microemulsion. Separation Science and Technology, 2011, 46, 1936-1940.	2.5	3
93	Crystal plane dependent dopant migration that boosts catalytic oxidation. Catalysis Science and Technology, 2018, 8, 6084-6090.	4.1	3
94	Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field. Journal of Colloid and Interface Science, 2021, 583, 586-593.	9.4	3
95	Poly-assisted template-free synthesis of novel double-shelled Co ₃ O ₄ yolk–shell submicrospheres with excellent electrochemical properties. RSC Advances, 2015, 5, 85964-85968.	3.6	2
96	Removal of platinum (IV) from hydrochloric acid medium with OMImT: Theoretical and experimental evidences for a neutral complexing mechanism. Journal of Molecular Liquids, 2019, 293, 111529.	4.9	2
97	Synthesis of temperature-responsive ionic liquids and study on the behavior and mechanism of Au(III) extraction from hydrochloric acid solutions. Hydrometallurgy, 2022, 211, 105859.	4.3	2
98	Morphology Control, Growth Mechanism, and Enhanced Catalytic Activity of Mesoporous CeO ₂ Microparticles. European Journal of Inorganic Chemistry, 2015, 2015, 5209-5217.	2.0	1
99	Hierarchical Sheet-on-Sphere Heterostructures as Supports for Metal Nanoparticles: A Robust Catalyst System. Catalysis Letters, 2019, 149, 2492-2499.	2.6	1
100	A one-pot general strategy towards the synthesis of core–satellite suprastructures. CrystEngComm, 2019, 21, 1335-1339.	2.6	1
101	Towards highly active heterogeneous catalysts <i>via</i> a sequential noncovalent bonding strategy. New Journal of Chemistry, 2022, 46, 1543-1550.	2.8	1
102	WICKER-SHAPED SILVER PARTICLES PREPARED BY EXTRACTION INTERFACE REDUCTION. , 2002, , .		0