Kusala Rajendran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11698243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Orphan Tsunami of 1524 on the Konkan Coast, Western India, and Its Implications. Pure and Applied Geophysics, 2021, 178, 4697-4716.	1.9	4
2	Landslide characterization using active and passive seismic imaging techniques: a case study from Kerala, India. Natural Hazards, 2021, 105, 1623-1642.	3.4	5
3	Paleoseismic context of the 1950 earthquake: Implications for seismic gaps in the Eastern Himalaya. Physics and Chemistry of the Earth, 2021, 124, 103055.	2.9	4
4	The 2012 Mw 8.6 Indian Ocean earthquake: Deep nucleation on a listric-like fault. Physics of the Earth and Planetary Interiors, 2020, 307, 106550.	1.9	2
5	On the Trail of the Great 2004 Andaman-Sumatra Earthquake: Seismotectonics and Regional Tsunami History from the Andaman-Nicobar Segment. Society of Earth Scientists Series, 2020, , 205-222.	0.3	3
6	Footprints of an elusive midâ€14th century earthquake in the central Himalaya: Consilience of evidence from Nepal and India. Geological Journal, 2019, 54, 2829-2846.	1.3	16
7	Revisiting the 1991 Uttarkashi and the 1999 Chamoli, India, earthquakes: Implications of rupture mechanisms in the central Himalaya. Journal of Asian Earth Sciences, 2018, 162, 107-120.	2.3	13
8	On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya. Tectonophysics, 2018, 722, 227-234.	2.2	28
9	Earthquakes as Expressions of Tectonic Activity. Resonance, 2018, 23, 337-353.	0.3	1
10	Structural context of the 2015 pair of Nepal earthquakes (Mw 7.8 and Mw 7.3): an analysis based on slip distribution, aftershock growth, and static stress changes. International Journal of Earth Sciences, 2017, 106, 1133-1146.	1.8	5
11	Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes. Earth-Science Reviews, 2017, 173, 1-30.	9.1	58
12	Site responses based on ambient vibrations and earthquake data: a case study from the meizoseismal area of the 2001 Bhuj earthquake. Journal of Seismology, 2017, 21, 335-347.	1.3	4
13	The 2016 <i>M</i> _w Â6.7 Imphal Earthquake in the Indoâ€Burman Range: A Case of Continuing Intraplate Deformation within the Subducted Slab. Bulletin of the Seismological Society of America, 2016, 106, 2653-2662.	2.3	7
14	Stalagmite growth perturbations from the Kumaun Himalaya as potential earthquake recorders. Journal of Seismology, 2016, 20, 579-594.	1.3	18
15	Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India. Journal of Seismology, 2016, 20, 733-745.	1.3	23
16	Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. Journal of Geophysical Research: Solid Earth, 2015, 120, 1623-1641.	3.4	82
17	Seismotectonics of the April–May 2015 Nepal earthquakes: An assessment based on the aftershock patterns, surface effects and deformational characteristics. Journal of Asian Earth Sciences, 2015, 111, 161-174.	2.3	43
18	Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere, 2015, 7, 247-256.	1.4	49

Kusala Rajendran

#	Article	IF	CITATIONS
19	Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake. Journal of Asian Earth Sciences, 2015, 98, 85-97.	2.3	8
20	Sheltered coastal environments as archives of paleo-tsunami deposits: Observations from the 2004 Indian Ocean tsunami. Journal of Asian Earth Sciences, 2014, 95, 331-341.	2.3	13
21	The April 2012 Indian Ocean earthquakes: Seismotectonic context and implications for their mechanisms. Tectonophysics, 2014, 617, 126-139.	2.2	14
22	The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Natural Hazards, 2013, 65, 219-239.	3.4	39
23	Climatic variability in Central Indian Himalaya during the last â^¼1800 years: Evidence from a high resolution speleothem record. Quaternary International, 2013, 304, 183-192.	1.5	91
24	Microearthquake activity near the Idukki Reservoir, south India: A rare example of renewed triggered seismicity. Engineering Geology, 2013, 153, 45-52.	6.3	5
25	Ages and relative sizes of preâ€2004 tsunamis in the Bay of Bengal inferred from geologic evidence in the Andaman and Nicobar Islands. Journal of Geophysical Research: Solid Earth, 2013, 118, 1345-1362.	3.4	24
26	Revisiting the earthquake sources in the Himalaya: Perspectives on past seismicity. Tectonophysics, 2011, 504, 75-88.	2.2	40
27	Geoarchaeological evidence of a Cholaâ€period tsunami from an ancient port at Kaveripattinam on the southeastern coast of India. Geoarchaeology - an International Journal, 2011, 26, 867-887.	1.5	18
28	Reassessing the earthquake hazard in Kerala based on the historical and current seismicity. Journal of the Geological Society of India, 2009, 73, 785-802.	1.1	33
29	Assessing the previous activity at the source zone of the 2001 Bhuj earthquake based on the nearâ€source and distant paleoseismological indicators. Journal of Geophysical Research, 2008, 113, .	3.3	60
30	Age estimates of coastal terraces in the Andaman and Nicobar Islands and their tectonic implications. Tectonophysics, 2008, 455, 53-60.	2.2	66
31	Reply to comment by R. Bilham on "Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism― Tectonics, 2006, 25, n/a-n/a.	2.8	4
32	Reply to comment by B. S. Sukhija et al. on "Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism― Tectonics, 2006, 25, n/a-n/a.	2.8	1
33	The status of central seismic gap: a perspective based on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics, 2005, 395, 19-39.	2.2	98
34	Tsunami geology and its role in hazard mitigation. Eos, 2005, 86, 400.	0.1	3
35	Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism. Tectonics, 2004, 23, n/a-n/a.	2.8	124
36	Studying earthquake recurrence in the Kachchh region, India. Eos, 2003, 84, 529.	0.1	7

Kusala Rajendran

#	Article	IF	CITATIONS
37	Comments on the Paper "Evidence for high velocity in Koyna Seismic Zone from P-wave teleseismic imaging―by Srinagesh et al Geophysical Research Letters, 2001, 28, 2357-2358.	4.0	1
38	Seismogenesis in the stable continental interiors: an appraisal based on two examples from India. Tectonophysics, 1999, 305, 355-370.	2.2	39
39	Geological investigations at Killari and Ter, central India and implications for palaeoseismicity in the shield region. Tectonophysics, 1999, 308, 67-81.	2.2	14
40	Comment on "The 1993 Killari earthquake in central India: A new fault in Mesozoic basalt flows?―by L. Seeber et al Journal of Geophysical Research, 1997, 102, 24561-24564.	3.3	4
41	The 1993 Killari (Latur), central India, earthquake: An example of fault reactivation in the Precambrian crust. Geology, 1996, 24, 651.	4.4	58
42	Sensitivity of a seismically active reservoir to low-amplitude fluctuations: Observations from Lake Jocassee, South Carolina. Pure and Applied Geophysics, 1995, 145, 87-95.	1.9	3
43	Three dimensional <i>P</i> velocity image of the Oroville Reservoir Area, California, from local earthquake tomography. Geophysical Research Letters, 1993, 20, 1627-1630.	4.0	6
44	The role of elastic, undrained, and drained responses in triggering earthquakes at Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 1992, 82, 1867-1888.	2.3	30
45	The 2005 and 2010 Earthquakes on the Sumatra–Andaman Trench: Evidence for Postâ€2004 Megathrust Intraplate Rejuvenation. Bulletin of the Seismological Society of America, 0, , .	2.3	2