G E Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11696827/publications.pdf Version: 2024-02-01

C. F. THOMPSON

#	Article	IF	CITATIONS
1	Antibacterial and non-cytotoxic effect of nanocomposites based in polyethylene and copper nanoparticles. Journal of Materials Science: Materials in Medicine, 2015, 26, 129.	1.7	19
2	Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Materials Science and Engineering C, 2014, 40, 24-31.	3.8	159
3	Microstructural Modification Arising from Alkaline Etching and Its Effect on Anodizing Behavior of Al-Li-Cu Alloy. Journal of the Electrochemical Society, 2013, 160, C111-C118.	1.3	16
4	Anodizing of Aluminum in Sulfuric Acid/Boric Acid Mixed Electrolyte. Journal of the Electrochemical Society, 2013, 160, C179-C184.	1.3	19
5	Single-Step Fabrication of Metal Nanoparticle Loaded Mesoporous Alumina through Anodizing of a Commercial Aluminum Alloy. Electrochemical and Solid-State Letters, 2012, 15, E4.	2.2	8
6	Porous Anodic Alumina Growth in Borax Electrolyte. Journal of the Electrochemical Society, 2012, 159, C583-C589.	1.3	4
7	Porous Anodic Film Growth on a Zr-W Alloy. Electrochemical and Solid-State Letters, 2012, 15, C8.	2.2	3
8	Ion Migration and Film Morphologies in Anodic Alumina Films Formed in Selenate Electrolyte. Journal of the Electrochemical Society, 2012, 159, C312-C317.	1.3	2
9	¹⁸ O distributions in porous anodic alumina by plasma profiling timeâ€ofâ€flight mass spectrometry and nuclear reaction analysis. Surface and Interface Analysis, 2012, 44, 1346-1352.	0.8	4
10	Growth and field crystallization of anodic films on Ta–Nb alloys. Journal of Solid State Electrochemistry, 2012, 16, 1595-1604.	1.2	16
11	Anodic Film Formation on AA 2099-T8 Aluminum Alloy in Tartaric–Sulfuric Acid. Journal of the Electrochemical Society, 2011, 158, C17.	1.3	45
12	Volume Expansion Factor and Growth Efficiency of Anodic Alumina Formed in Sulphuric Acid. Journal of the Electrochemical Society, 2011, 158, C202-C214.	1.3	51
13	Growth of porous anodic alumina films in hot phosphate–glycerol electrolyte. Journal of Solid State Electrochemistry, 2011, 15, 689-696.	1.2	9
14	Incorporation and migration of phosphorus species within anodic films on an Alâ€W alloy. Surface and Interface Analysis, 2011, 43, 893-902.	0.8	8
15	Influence of current density on the distribution of tungsten tracer in porous anodic alumina films. Surface and Interface Analysis, 2010, 42, 247-251.	0.8	3
16	Incorporation and Migration of Phosphorus Species in Anodic Alumina Films Containing Tungsten Tracer Layers. Journal of the Electrochemical Society, 2010, 157, C437.	1.3	10
17	[sup 18]O Tracer Study of Porous Film Growth on Aluminum in Phosphoric Acid. Journal of the Electrochemical Society, 2010, 157, C399.	1.3	42
18	Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium. Acta Biomaterialia, 2009, 5, 1356-1366.	4.1	99

#	Article	IF	CITATIONS
19	Anodizing of Aluminum under Nonsteady Conditions. Journal of the Electrochemical Society, 2009, 156, C407.	1.3	28
20	Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology, 2009, 20, 365601.	1.3	49
21	Tracer Investigation of Pore Formation in Anodic Titania. Journal of the Electrochemical Society, 2008, 155, C487.	1.3	129
22	Anodic Film Formation on Aluminum in Nitric Acid. Journal of the Electrochemical Society, 2008, 155, C557.	1.3	9
23	Incorporation of Gold into Porous Anodic Alumina Formed on an Al–Au Alloy. Journal of the Electrochemical Society, 2008, 155, C333.	1.3	26
24	Characterization of Spark-Anodized Titanium for Biomedical Applications. Journal of the Electrochemical Society, 2007, 154, C279.	1.3	36
25	Compositional Evidence for Flow in Anodic Films on Aluminum under High Electric Fields. Journal of the Electrochemical Society, 2007, 154, C540.	1.3	47
26	Formation of porous anodic alumina at high current efficiency. Nanotechnology, 2007, 18, 415605.	1.3	35
27	A tracer investigation of chromic acid anodizing of aluminium. Surface and Interface Analysis, 2007, 39, 860-864.	0.8	61
28	A Tracer Study of Porous Anodic Alumina. Electrochemical and Solid-State Letters, 2006, 9, B47.	2.2	179
29	Spark anodising of titanium for biomedical applications. Transactions of the Institute of Metal Finishing, 2006, 84, 125-133.	0.6	23
30	Influence of surface treatments in the initial stages of anodizing Al–Ag alloys in neutral electrolytes. Journal of Solid State Electrochemistry, 2006, 10, 83-90.	1.2	3
31	Tracing locations of new coating material during spark anodizing of titanium. Philosophical Magazine, 2006, 86, 49-66.	0.7	31
32	Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, B17-B20.	2.2	43
33	A Tracer Study of Oxide Growth during Spark Anodizing of Aluminum. Journal of the Electrochemical Society, 2005, 152, C382.	1.3	62
34	Influence of Film Composition on the Structure and Dielectric Properties of Anodic Films on Ti–W Alloys. Journal of the Electrochemical Society, 2005, 152, B263.	1.3	38
35	Dielectric and mechanical properties of anodic films in the Ta-Ti system. Surface and Interface Analysis, 2003, 35, 477-482.	0.8	13
36	Oxygen generation in anodized Ta–Cu alloys. Philosophical Magazine, 2003, 83, 2733-2746.	0.7	3

#	Article	IF	CITATIONS
37	Influence of Local Heat Development on Film Thickness for Anodizing Aluminum in Sulfuric Acid. Journal of the Electrochemical Society, 2003, 150, B158.	1.3	53
38	Compositional Self-Organizing in the Anodic Film on a Mg-Ta Alloy. Journal of the Electrochemical Society, 2003, 150, B439.	1.3	3
39	Ionic Transport in Anodically Oxidized Al/W Layers. Journal of the Electrochemical Society, 2002, 149, B23.	1.3	23
40	Behavior of Impurity and Minor Alloying Elements during Surface Treatments of Aluminum. Journal of the Electrochemical Society, 2002, 149, B139.	1.3	30
41	Ionic Mobilities in Amorphous Anodic Titania. Journal of the Electrochemical Society, 2002, 149, B70.	1.3	50
42	Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation. Nanotechnology, 2002, 13, 451-455.	1.3	93
43	Importance of amorphous-to-crystalline transitions for ionic transport and oxygen generation in anodic films. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1027-1042.	0.8	11
44	Behaviour of copper and generation of oxygen during anodizing of Nb-Cu alloys. Surface and Interface Analysis, 2000, 29, 895-902.	0.8	7
45	Formation and accommodation of gold atom clusters and oxygen bubbles during amorphous anodic alumina growth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 385-399.	1.0	18
46	Direct evidence of the formation of Al ₂ Au nanocrystals at the alloy-film interface of anodized Al-Au alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 267-272.	0.8	6
47	The Migration of Fluoride Ions in Growing Anodic Oxide Films on Tantalum. Journal of the Electrochemical Society, 1997, 144, 418-423.	1.3	55
48	Effects of Alloying Elements in Anodizing of Aluminium. Transactions of the Institute of Metal Finishing, 1997, 75, 18-23.	0.6	193
49	Inter–relationships between ionic transport and composition in amorphous anodic oxides. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 453, 1593-1609.	1.0	47
50	Evidence of oxygen bubbles formed within anodic films on aluminium-copper alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 729-741.	0.8	79
51	Anodic film formation on high strength aluminium alloy FVS0812. Journal of Materials Science, 1997, 32, 4909-4916.	1.7	15
52	The incorporation of metal ions into anodic films on aluminium alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 445-460.	0.6	68
53	A Model for the Incorporation of Electrolyte Species into Anodic Alumina. Journal of the Electrochemical Society, 1996, 143, 74-83.	1.3	163
54	The Composition of the Alloy/Film Interface during Anodic Oxidation of Alâ€W Alloys. Journal of the Electrochemical Society, 1996, 143, 2465-2470.	1.3	51

#	Article	IF	CITATIONS
55	A high-resolution, analytical study of the anodic film formed on GaAs in a tungstate electrolyte. Journal Physics D: Applied Physics, 1996, 29, 2545-2553.	1.3	8
56	Oxidation of copper and mobility of copper ions during anodizing of an Al—1.5 wt.% Cu alloy. Surface and Interface Analysis, 1995, 23, 892-898.	0.8	68
57	Anodic film formation on sputter-deposited amorphous Al-Zr alloys. Journal Physics D: Applied Physics, 1995, 28, 2612-2618.	1.3	18
58	An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution. Journal of the Electrochemical Society, 1995, 142, L177-L179.	1.3	107
59	Gel formation during growth of barrier-type anodic films on aluminium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 163-174.	0.6	6
60	Formation of barrier anodic films on aluminium in antimonate electrolyte. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 787-803.	0.6	8
61	Development of porous anodic films on aluminium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 66, 643-652.	0.8	102
62	A novel marker for the determination of transport numbers during anodic barrier oxide growth on aluminium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 64, 345-353.	0.6	32
63	Smoothing of Aluminum Surfaces during Barrier Anodic Oxide Growth on Aluminum Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1991, 42, 645-648.	0.1	10
64	Microcrystallinity in â€~X-ray amorphous' anodic Ta ₂ O ₅ . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 63, 891-899.	0.6	13
65	On the nature of ?easy paths? for the diffusion of oxygen in thermal oxide films on aluminum. Oxidation of Metals, 1991, 35, 427-439.	1.0	59
66	An X-ray absorption study of barrier-type anodic films formed on aluminium in chromate electrolytes. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 63, 557-571.	0.6	18
67	Direct observation of the two-layer structure of anodic oxide films on tantalum. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1989, 60, 591-596.	0.8	10
68	Incorporation of tungsten and molybdenum into anodic alumina films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 60, 513-521.	0.6	36
69	Structural information about amorphous anodic alumina from ²⁷ Al MAS NMR. Philosophical Magazine Letters, 1989, 59, 189-195.	0.5	43
70	Electronoptical observations of anodic films formed on aluminium in molten melts. Transactions of the Institute of Metal Finishing, 1988, 66, 102-106.	0.6	0
71	Important features in the adhesive bonding of aluminium. Transactions of the Institute of Metal Finishing, 1988, 66, 127-132.	0.6	2
72	Anodic oxidation of aluminium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1987, 55, 651-667.	0.6	191

#	Article	IF	CITATIONS
73	Barrier-Type anodic films on aluminium in aqueous borate solutions: 1?Film density and stopping power of anodic alumina films for alpha particles. Surface and Interface Analysis, 1983, 5, 247-251.	0.8	78
74	Barrier-type anodic films on aluminium in aqueous borate solutions: 2?Film compositions by Rutherford backscattering spectroscopy and nuclear reaction methods. Surface and Interface Analysis, 1983, 5, 252-263.	0.8	58
75	Porous anodic film formation on aluminium. Nature, 1981, 290, 230-232.	13.7	452
76	Porous Anodic Films Formed on Aluminium in Chromic Acid. Transactions of the Institute of Metal Finishing, 1980, 58, 21-25.	0.6	30
77	Observation of flaws in anodic films on aluminium. Nature, 1980, 286, 471-472.	13.7	39
78	Porous Anodic Film Formation on Scratched Aluminium Substrates. Transactions of the Institute of Metal Finishing, 1979, 57, 123-129.	0.6	8
79	Nucleation and growth of porous anodic films on aluminium. Nature, 1978, 272, 433-435.	13.7	414
80	STEM/EDAX Analysis of the Cell Walls in Porous Anodic Films Formed on Aluminum. Journal of the Electrochemical Society, 1978, 125, 1480-1482.	1.3	53
81	Porous Anodic Film Formation on Aluminium Substrates in Phosphoric Acid. Transactions of the Institute of Metal Finishing, 1978, 56, 159-167.	0.6	53
82	Electron Microscopy of Anodic Films Formed on Aluminium in Sulphuric Acid. Transactions of the Institute of Metal Finishing, 1977, 55, 117-128.	0.6	30