## Michael A Savageau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11695637/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phenotype-centric modeling for rational metabolic engineering. Metabolic Engineering, 2022, 72, 365-375.                                                                                                                | 7.0  | 0         |
| 2  | Mechanistic Modeling of Biochemical Systems without A Priori Parameter Values Using the Design<br>Space Toolbox v.3.0. IScience, 2020, 23, 101200.                                                                      | 4.1  | 8         |
| 3  | TaxisPy: A Python-based software for the quantitative analysis of bacterial chemotaxis. Journal of<br>Microbiological Methods, 2020, 175, 105918.                                                                       | 1.6  | 2         |
| 4  | Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation. Cell Reports, 2019, 28, 342-351.e4.                                                                                                         | 6.4  | 61        |
| 5  | Phenotype-centric modeling for elucidation of biological design principles. Journal of Theoretical<br>Biology, 2018, 455, 281-292.                                                                                      | 1.7  | 12        |
| 6  | Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy<br>for Natural and Synthetic Biological Systems. Frontiers in Genetics, 2016, 7, 118.                                  | 2.3  | 16        |
| 7  | Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems. Scientific Reports, 2016, 6, 32375.                                                                                                      | 3.3  | 9         |
| 8  | Elucidating the genotype–phenotype map by automatic enumeration and analysis of the phenotypic repertoire. Npj Systems Biology and Applications, 2015, 1, .                                                             | 3.0  | 17        |
| 9  | Unrelated toxin–antitoxin systems cooperate to induce persistence. Journal of the Royal Society<br>Interface, 2015, 12, 20150130.                                                                                       | 3.4  | 12        |
| 10 | Design principles of a conditional futile cycle exploited for regulation. Molecular BioSystems, 2015, 11, 1841-1849.                                                                                                    | 2.9  | 10        |
| 11 | Evolution of a Genome-Encoded Bias in Amino Acid Biosynthetic Pathways Is a Potential Indicator of<br>Amino Acid Dynamics in the Environment. Molecular Biology and Evolution, 2014, 31, 2865-2878.                     | 8.9  | 1         |
| 12 | Strategy Revealing Phenotypic Differences among Synthetic Oscillator Designs. ACS Synthetic Biology, 2014, 3, 686-701.                                                                                                  | 3.8  | 23        |
| 13 | Deconstructing Complex Nonlinear Models in System Design Space. Natural Computing Series, 2014, ,<br>475-506.                                                                                                           | 2.2  | 3         |
| 14 | Molecular mechanisms of multiple toxin–antitoxin systems are coordinated to govern the persister<br>phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>E2528-37. | 7.1  | 101       |
| 15 | Phenotypes and Design Principles in System Design Space. , 2013, , 287-310.                                                                                                                                             |      | 7         |
| 16 | A bistable hysteretic switch in an activator–repressor regulated restriction–modification system.<br>Nucleic Acids Research, 2013, 41, 6045-6057.                                                                       | 14.5 | 19        |
| 17 | Phenotypic deconstruction of gene circuitry. Chaos, 2013, 23, 025108.                                                                                                                                                   | 2.5  | 13        |
| 18 | Relative Amino Acid Composition Signatures of Organisms and Environments. PLoS ONE, 2013, 8, e77319.                                                                                                                    | 2.5  | 82        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Regulatory Design Governing Progression of Population Growth Phases in Bacteria. PLoS ONE, 2012, 7, e30654.                                                                                                         | 2.5  | 16        |
| 20 | Design of the lac gene circuit revisited. Mathematical Biosciences, 2011, 231, 19-38.                                                                                                                               | 1.9  | 24        |
| 21 | Phenotypic repertoire of the FNR regulatory network in <i>Escherichia coli</i> . Molecular<br>Microbiology, 2011, 79, 149-165.                                                                                      | 2.5  | 24        |
| 22 | Biomedical Engineering Strategies in System Design Space. Annals of Biomedical Engineering, 2011, 39, 1278-1295.                                                                                                    | 2.5  | 10        |
| 23 | Automated construction and analysis of the design space for biochemical systems. Bioinformatics, 2010, 26, 2601-2609.                                                                                               | 4.1  | 26        |
| 24 | Regulation of Aerobic-to-Anaerobic Transitions by the FNR Cycle in Escherichia coli. Journal of<br>Molecular Biology, 2010, 397, 893-905.                                                                           | 4.2  | 36        |
| 25 | Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human<br>Erythrocytes. PLoS ONE, 2010, 5, e13031.                                                                       | 2.5  | 21        |
| 26 | Phenotypes and tolerances in the design space of biochemical systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6435-6440.                                        | 7.1  | 77        |
| 27 | Quantifying Global Tolerance of Biochemical Systems: Design Implications for Moiety-Transfer Cycles.<br>PLoS Computational Biology, 2009, 5, e1000319.                                                              | 3.2  | 31        |
| 28 | Qualitatively distinct phenotypes in the design space of biochemical systems. FEBS Letters, 2009, 583, 3914-3922.                                                                                                   | 2.8  | 28        |
| 29 | Hysteretic and graded responses in bacterial two-component signal transduction. Molecular<br>Microbiology, 2008, 68, 1196-1215.                                                                                     | 2.5  | 60        |
| 30 | Stabilizing and Destabilizing Effects of Embedding 3-Node Subgraphs on the State Space of Boolean<br>Networks. Lecture Notes in Computer Science, 2008, , 100-107.                                                  | 1.3  | 1         |
| 31 | Distinctive Topologies of Partner-switching Signaling Networks Correlate with their Physiological<br>Roles. Journal of Molecular Biology, 2007, 369, 1333-1352.                                                     | 4.2  | 44        |
| 32 | Signalling network with a bistable hysteretic switch controls developmental activation of the If Ftranscription factor inBacillus subtilis. Molecular Microbiology, 2006, 61, 165-184.                              | 2.5  | 42        |
| 33 | Evolution of enzymes in a series is driven by dissimilar functional demands. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2226-2231.                                 | 7.1  | 22        |
| 34 | Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes. Molecular<br>Microbiology, 2005, 56, 1017-1034.                                                                           | 2,5  | 34        |
| 35 | Design of gene circuits: lessons from bacteria. Nature Reviews Genetics, 2004, 5, 34-42.                                                                                                                            | 16.3 | 206       |
| 36 | Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function. Molecular Microbiology, 2003, 48, 25-51. | 2.5  | 85        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Design Principles for Regulator Gene Expression in a Repressible Gene Circuit. Journal of Molecular<br>Biology, 2003, 332, 861-876.                                                                                    | 4.2  | 50        |
| 38 | Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli. Cell, 2003, 113, 597-607.                                                                                       | 28.9 | 643       |
| 39 | Quantitative evolutionary design of glucose 6-phosphate dehydrogenase expression in human<br>erythrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2003,<br>100, 14463-14468. | 7.1  | 42        |
| 40 | Alternative designs for a genetic switch: Analysis of switching times using the piecewise power-law representation. Mathematical Biosciences, 2002, 180, 237-253.                                                      | 1.9  | 39        |
| 41 | Effects of alternative connectivity on behavior of randomly constructed Boolean networks. Physica<br>D: Nonlinear Phenomena, 2002, 170, 143-161.                                                                       | 2.8  | 55        |
| 42 | Irreversibility in Unbranched Pathways: Preferred Positions Based on Regulatory Considerations.<br>Biophysical Journal, 2001, 80, 1174-1185.                                                                           | 0.5  | 17        |
| 43 | Design principles for elementary gene circuits: Elements, methods, and examples. Chaos, 2001, 11, 142.                                                                                                                 | 2.5  | 166       |
| 44 | Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics, 2000, 16, 527-533.                                                                             | 4.1  | 50        |
| 45 | Extending the method of mathematically controlled comparison to include numerical comparisons.<br>Bioinformatics, 2000, 16, 786-798.                                                                                   | 4.1  | 78        |
| 46 | Effect of Overall Feedback Inhibition in Unbranched Biosynthetic Pathways. Biophysical Journal, 2000,<br>79, 2290-2304.                                                                                                | 0.5  | 49        |
| 47 | Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. BioSystems, 1998, 47, 9-36.                                                              | 2.0  | 90        |
| 48 | Demand Theory of Gene Regulation. I. Quantitative Development of the Theory. Genetics, 1998, 149,<br>1665-1676.                                                                                                        | 2.9  | 71        |
| 49 | Demand Theory of Gene Regulation. II. Quantitative Application to the Lactose and Maltose Operons of Escherichia coli. Genetics, 1998, 149, 1677-1691.                                                                 | 2.9  | 50        |
| 50 | Completely uncoupled and perfectly coupled gene expression in repressible systems 1 1Edited by K.<br>Yamamoto. Journal of Molecular Biology, 1997, 266, 538-558.                                                       | 4.2  | 31        |
| 51 | Rules for Coupled Expression of Regulator and Effector Genes in Inducible Circuits. Journal of<br>Molecular Biology, 1996, 255, 121-139.                                                                               | 4.2  | 101       |
| 52 | Power-law formalism: A canonical nonlinear approach to modeling and analysis. , 1996, , 3323-3334.                                                                                                                     |      | 20        |
| 53 | Model Assessment and Refinement Using Strategies from Biochemical Systems Theory: Application to<br>Metabolism in Human Red Blood Cells. Journal of Theoretical Biology, 1996, 179, 329-368.                           | 1.7  | 63        |
| 54 | Application of Biochemical Systems Theory to Metabolism in Human Red Blood Cells. Journal of Biological Chemistry, 1996, 271, 7927-7941.                                                                               | 3.4  | 65        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. Journal of Theoretical<br>Biology, 1995, 176, 115-124.                                                                      | 1.7 | 157       |
| 56 | Chapter 5 Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited. Principles of Medical<br>Biology, 1995, , 93-146.                                                                          | 0.1 | 18        |
| 57 | Subunit Structure of Regulator Proteins Influences the Design of Gene Circuitry: Analysis of<br>Perfectly Coupled and Completely Uncoupled Circuits. Journal of Molecular Biology, 1995, 248, 739-755. | 4.2 | 36        |
| 58 | Analysis of systems influencing renal hemodynamics and sodium excretion. I. Biochemical systems theory. Integrative Psychological and Behavioral Science, 1994, 29, 55-73.                             | 0.3 | 1         |
| 59 | Influence of fractal kinetics on molecular recognition. Journal of Molecular Recognition, 1993, 6, 149-157.                                                                                            | 2.1 | 20        |
| 60 | Finding multiple roots of nonlinear algebraic equations using s-system methodology. Applied Mathematics and Computation, 1993, 55, 187-199.                                                            | 2.2 | 20        |
| 61 | Dominance according to metabolic control analysis: Major achievement or house of cards?. Journal of Theoretical Biology, 1992, 154, 131-136.                                                           | 1.7 | 41        |
| 62 | Biochemical systems theory: Operational differences among variant representations and their significance. Journal of Theoretical Biology, 1991, 151, 509-530.                                          | 1.7 | 55        |
| 63 | Metabolite channeling: Implications for regulation of metabolism and for quantitative description of reactions in vivo. Journal of Theoretical Biology, 1991, 152, 85-92.                              | 1.7 | 13        |
| 64 | Efficient Solution of Nonlinear Ordinary Differential Equations Expressed in S-system Canonical<br>Form. SIAM Journal on Numerical Analysis, 1990, 27, 704-735.                                        | 2.3 | 84        |
| 65 | Biochemical Systems Theory: Alternative Views of Metabolic Control. , 1990, , 69-87.                                                                                                                   |     | 8         |
| 66 | Constraints among molecular and systemic properties: Implications for physiological genetics.<br>Journal of Theoretical Biology, 1989, 141, 93-115.                                                    | 1.7 | 65        |
| 67 | A comparison of variant theories of intact biochemical systems. I. enzyme-enzyme interactions and biochemical systems theory. Mathematical Biosciences, 1989, 94, 161-193.                             | 1.9 | 82        |
| 68 | A comparison of variant theories of intact biochemical systems. II. flux-oriented and metabolic control theories. Mathematical Biosciences, 1989, 94, 195-238.                                         | 1.9 | 70        |
| 69 | Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways. Mathematical Biosciences, 1989, 94, 239-269.                                                    | 1.9 | 77        |
| 70 | Introduction to S-systems and the underlying power-law formalism. Mathematical and Computer<br>Modelling, 1988, 11, 546-551.                                                                           | 2.0 | 59        |
| 71 | Biochemical systems theory and metabolic control theory: 1. fundamental similarities and differences.<br>Mathematical Biosciences, 1987, 86, 127-145.                                                  | 1.9 | 118       |
| 72 | Biochemical systems theory and metabolic control theory: 2. the role of summation and connectivity relationships. Mathematical Biosciences, 1987, 86, 147-169.                                         | 1.9 | 94        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical<br>Biosciences, 1987, 87, 83-115.                                                                                   | 1.9  | 248       |
| 74 | Accuracy of alternative representations for integrated biochemical systems. Biochemistry, 1987, 26, 6869-6880.                                                                                                        | 2.5  | 119       |
| 75 | Equivalence between S-systems and Volterra systems. Mathematical Biosciences, 1986, 78, 47-55.                                                                                                                        | 1.9  | 47        |
| 76 | Analytical solutions to a generalized growth equation. Journal of Mathematical Analysis and Applications, 1984, 103, 380-386.                                                                                         | 1.0  | 32        |
| 77 | Integrated function of a kinetic proofreading mechanism: steady-state analysis testing internal consistency of data obtained in vivo and in vitro and predicting parameter values. Biochemistry, 1984, 23, 1701-1709. | 2.5  | 25        |
| 78 | Models of Gene Function. ACS Symposium Series, 1983, , 3-25.                                                                                                                                                          | 0.5  | 7         |
| 79 | Escherichia coli Habitats, Cell Types, and Molecular Mechanisms of Gene Control. American<br>Naturalist, 1983, 122, 732-744.                                                                                          | 2.1  | 271       |
| 80 | Optimization of kinetic proofreading: A general method for derivation of the constraint relations and an exploration of a specific case. Journal of Theoretical Biology, 1981, 93, 157-177.                           | 1.7  | 20        |
| 81 | Accuracy of proofreading with zero energy cost. Journal of Theoretical Biology, 1981, 93, 179-195.                                                                                                                    | 1.7  | 11        |
| 82 | Proofreading systems of multiple stages for improved accuracy of biological discrimination. Journal of Theoretical Biology, 1980, 85, 99-123.                                                                         | 1.7  | 44        |
| 83 | Growth equations: A general equation and a survey of special cases. Mathematical Biosciences, 1980, 48, 267-278.                                                                                                      | 1.9  | 80        |
| 84 | Feedforward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by the penultimate product. Journal of Theoretical Biology, 1979, 77, 385-404.                                           | 1.7  | 7         |
| 85 | Feedforward inhibition in biosynthetic pathways: inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway. Journal of Theoretical Biology, 1979, 77, 405-425.                                      | 1.7  | 26        |
| 86 | Energy cost of proofreading to increase fidelity of transfer ribonucleic acid aminoacylation.<br>Biochemistry, 1979, 18, 3486-3493.                                                                                   | 2.5  | 43        |
| 87 | Autogenous and Classical Regulation of Gene Expression: A General Theory and Experimental Evidence.<br>, 1979, , 57-108.                                                                                              |      | 11        |
| 88 | Optimal design of feedback control by inhibition. Journal of Molecular Evolution, 1975, 5, 199-222.                                                                                                                   | 1.8  | 83        |
| 89 | Significance of autogenously regulated and constitutive synthesis of regulatory proteins in repressible biosynthetic systems. Nature, 1975, 258, 208-214.                                                             | 27.8 | 34        |
| 90 | Optimal design of feedback control by inhibition. Journal of Molecular Evolution, 1974, 4, 139-156.                                                                                                                   | 1.8  | 68        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Comparison of classical and autogenous systems of regulation in inducible operons. Nature, 1974, 252, 546-549.                                                                                                                                                                                                                                                                          | 27.8 | 203       |
| 92  | Transport of Biosynthetic Intermediates: Homoserine and Threonine Uptake in <i>Escherichia coli</i> .<br>Journal of Bacteriology, 1974, 117, 1002-1009.                                                                                                                                                                                                                                 | 2.2  | 32        |
| 93  | Transport of Biosynthetic Intermediates: Regulation of Homoserine and Threonine Uptake in<br><i>Escherichia coli</i> . Journal of Bacteriology, 1974, 120, 114-120.                                                                                                                                                                                                                     | 2.2  | 35        |
| 94  | Metabolic Regulation by Homoserine in <i>Escherichia coli</i> B/r. Journal of Bacteriology, 1973, 116, 663-672.                                                                                                                                                                                                                                                                         | 2.2  | 29        |
| 95  | A possible role in the regulation of primary amination for a complex of glutamine: α-Ketoglutarate<br>amidotransferase and glutamate dehydrogenase in Escherichia coli. Biochemical and Biophysical<br>Research Communications, 1972, 48, 41-47.                                                                                                                                        | 2.1  | 19        |
| 96  | The Behavior of Intact Biochemical Control Systems <sup>*</sup> *This will not be an exhaustive review of the different methods for analyzing biochemical systems, but rather a selective treatment of one particular approach. Reviews covering alternative approaches to these problems have recently been presented (28, 33) Current Topics in Cellular Regulation, 1972, 6, 63-130. | 9.6  | 142       |
| 97  | Concepts relating the behavior of biochemical systems to their underlying molecular properties.<br>Archives of Biochemistry and Biophysics, 1971, 145, 612-621.                                                                                                                                                                                                                         | 3.0  | 133       |
| 98  | Parameter Sensitivity as a Criterion for Evaluating and Comparing the Performance of Biochemical Systems. Nature, 1971, 229, 542-544.                                                                                                                                                                                                                                                   | 27.8 | 217       |
| 99  | Biochemical systems analysis. Journal of Theoretical Biology, 1970, 26, 215-226.                                                                                                                                                                                                                                                                                                        | 1.7  | 219       |
| 100 | Repression of the threonine synthetase system in Escherichia coli. Archives of Biochemistry and Biophysics, 1970, 137, 181-184.                                                                                                                                                                                                                                                         | 3.0  | 5         |
| 101 | Biochemical systems analysis. Journal of Theoretical Biology, 1969, 25, 365-369.                                                                                                                                                                                                                                                                                                        | 1.7  | 556       |
| 102 | Biochemical systems analysis. Journal of Theoretical Biology, 1969, 25, 370-379.                                                                                                                                                                                                                                                                                                        | 1.7  | 423       |