Won Suk Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1169486/publications.pdf

Version: 2024-02-01

687363 610901 25 606 13 24 citations h-index g-index papers 25 25 25 883 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ternary <scp>Niâ€Moâ€P</scp> catalysts for enhanced activity and durability in proton exchange membrane water electrolysis. International Journal of Energy Research, 2022, 46, 13023-13034.	4.5	7
2	Reviewâ€"Development of Highly Active and Stable Catalyst Supports and Platinumâ€"Free Catalysts for PEM Fuel Cell. Journal of the Electrochemical Society, 2022, 169, 074501.	2.9	6
3	Enhanced Performance of Pt Nanoparticles on Ni-N Co-Doped Graphitized Carbon for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Catalysts, 2021, 11, 909.	3.5	2
4	Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation. Korean Journal of Chemical Engineering, 2021, 38, 2229-2234.	2.7	5
5	Recent Studies on Bimetallic Pt–M Catalyst for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Journal of Korean Institute of Metals and Materials, 2021, 59, 741-752.	1.0	2
6	Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19833-19842.	10.3	47
7	Binder-coated electrodeposited PtNiCu catalysts for the oxygen reduction reaction in high-temperature polymer electrolyte membrane fuel cells. Applied Surface Science, 2020, 510, 145444.	6.1	14
8	An N-doped porous carbon network with a multidirectional structure as a highly efficient metal-free catalyst for the oxygen reduction reaction. Nanoscale, 2019, 11, 2423-2433.	5.6	63
9	Study on durability of Pt supported on graphitized carbon under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2018, 27, 326-334.	12.9	33
10	High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction. Journal of Colloid and Interface Science, 2018, 514, 30-39.	9.4	13
11	Comparative investigation of nitrogen species in transition metals incorporated carbon catalysts for the oxygen reduction reaction. Chemical Physics Letters, 2018, 708, 42-47.	2.6	6
12	(Invited)Development of Highly Active and Durable Hybrid Compressive Platinum for Polymer Electrolyte Membrane (PEM) Fuel Cells at USC. ECS Transactions, 2018, 85, 123-135.	0.5	1
13	(Invited) Development of Highly Active and Durable Hybrid Compressive Platinum Lattice Cathode Catalyst for Polymer Electrolyte Membrane (PEM) Fuel Cells at USC. ECS Meeting Abstracts, 2018, , .	0.0	O
14	Development of ultra–low highly active and durable hybrid compressive platinum lattice cathode catalysts for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 12507-12520.	7.1	8
15	Effect of Pretreatment on Durability of fct-Structured Pt-Based Alloy Catalyst for the Oxygen Reduction Reaction under Operating Conditions in Polymer Electrolyte Membrane Fuel Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 9809-9817.	6.7	27
16	Hybrid cathode catalyst with synergistic effect between carbon composite catalyst and Pt for ultra-low Pt loading in PEMFCs. Catalysis Today, 2017, 295, 65-74.	4.4	26
17	Improved durability of Pt catalyst supported on N-doped mesoporous graphitized carbon for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Carbon, 2017, 122, 746-755.	10.3	34
18	New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs. ACS Applied Materials & Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs. ACS Applied Materials & Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.	8.0	51

#	Article	IF	CITATION
19	Induced changes of Pt/C in activity and durability through heat-treatment for oxygen reduction reaction in acidic medium. International Journal of Hydrogen Energy, 2017, 42, 22830-22840.	7.1	10
20	Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2015, 167, 1-12.	5. 2	30
21	Performance degradation of direct formic acid fuel cell incorporating a Pd anode catalyst. Journal of Power Sources, 2011, 196, 4573-4578.	7.8	28
22	Development of Supported Bifunctional Oxygen Electrocatalysts with High Performance for Unitized Regenerative Fuel Cell Applications. ECS Transactions, 2010, 33, 1979-1987.	0.5	8
23	Titania Supported Platinum Catalyst with High Electrocatalytic Activity and Stability for Polymer Electrolyte Membrane Fuel Cell. ECS Transactions, 2010, 33, 483-491.	0.5	3
24	Analysis of palladium-based anode electrode using electrochemical impedance spectra in direct formic acid fuel cells. Journal of Power Sources, 2007, 173, 53-59.	7.8	56
25	Direct formic acid fuel cell portable power system for the operation of a laptop computer. Journal of Power Sources, 2006, 162, 532-540.	7.8	126