Yipu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11694849/publications.pdf Version: 2024-02-01

YIDILLII

#	Article	IF	CITATIONS
1	An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. Journal of Energy Chemistry, 2022, 66, 619-627.	7.1	31
2	Orbital engineering of C3N monolayer to design efficient synergistic sites electrocatalyst for boosting alkaline hydrogen evolution. Applied Surface Science, 2022, 582, 152474.	3.1	5
3	Biaxially Strained MoS ₂ Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Advanced Materials, 2022, 34, e2202195.	11.1	43
4	Design of a Multilayered Oxygenâ€Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting. Advanced Functional Materials, 2021, 31, 2101820.	7.8	103
5	Future directions of catalytic chemistry. Pure and Applied Chemistry, 2021, 93, 1411-1421.	0.9	4
6	Bilayer porous polymer for efficient passive building cooling. Nano Energy, 2021, 85, 105971.	8.2	123
7	lridium-containing water-oxidation catalysts in acidic electrolyte. Chinese Journal of Catalysis, 2021, 42, 1054-1077.	6.9	66
8	Understanding the Synergistic Effects of Cobalt Single Atoms and Small Nanoparticles: Enhancing Oxygen Reduction Reaction Catalytic Activity and Stability for Zincâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2104735.	7.8	123
9	Transitionâ€Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for Highâ€Performance Electrocatalysis. Angewandte Chemie, 2020, 132, 3989-3993.	1.6	88
10	Theoretical insights into nonprecious oxygen-evolution active sites in Ti–Ir-Based perovskite solid solution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 218-223.	5.2	15
11	Transitionâ€Metal–Boron Intermetallics with Strong Interatomic d–sp Orbital Hybridization for Highâ€Performance Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 3961-3965.	7.2	139
12	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	11.1	304
13	Perovskiteâ€īype Solid Solution Nanoâ€Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution. Advanced Materials, 2020, 32, e2001430.	11.1	107
14	Thermal Selfâ€Protection of Zincâ€ion Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes. Advanced Energy Materials, 2020, 10, 2002898.	10.2	102
15	ldentifying Key Structural Subunits and Their Synergism in Low-Iridium Triple Perovskites for Oxygen Evolution in Acidic Media. Chemistry of Materials, 2020, 32, 3904-3910.	3.2	29
16	High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy and Environmental Science, 2019, 12, 684-692.	15.6	169
17	Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions. Angewandte Chemie, 2019, 131, 7713-7717.	1.6	123
18	<i>In situ</i> structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5288-5294.	5.2	69

Yipu Liu

#	Article	IF	CITATIONS
19	Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions. Angewandte Chemie - International Edition, 2019, 58, 7631-7635.	7.2	176
20	Surface-clean, phase-pure multi-metallic carbides for efficient electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 940-947.	3.0	29
21	In Situ Generation of Bifunctional, Efficient Fe-Based Catalysts from Mackinawite Iron Sulfide for Water Splitting. CheM, 2018, 4, 1139-1152.	5.8	271
22	Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Scientific Reports, 2018, 8, 4478.	1.6	22
23	Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nature Communications, 2018, 9, 2609.	5.8	389
24	Coupling Subâ€Nanometric Copper Clusters with Quasiâ€Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Advanced Materials, 2017, 29, 1606200.	11.1	350
25	Nano-netlike carbon fibers decorated with highly dispersed CoSe2 nanoparticles as efficient hydrogen evolution electrocatalysts. Journal of Alloys and Compounds, 2017, 702, 611-618.	2.8	20
26	Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large urrentâ€Đensity Oxygen Evolution Electrocatalysis. Advanced Materials, 2017, 29, 1700404.	11.1	462
27	Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3â~'xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35, 161-170.	8.2	339
28	Ag@Co _{<i>x</i>} P Core–Shell Heterogeneous Nanoparticles as Efficient Oxygen Evolution Reaction Catalysts. ACS Catalysis, 2017, 7, 7038-7042.	5.5	144
29	Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12370-12373.	6.6	335
30	Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst. Advanced Functional Materials, 2016, 26, 4839-4847.	7.8	438
31	Electrocatalysis: Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheetâ€Built, Hollow Ni ₃ S ₂ â€Based Electrocatalyst (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4999-4999.	7.8	10
32	Exploring Mn ²⁺ -location-dependent red emission from (Mn/Zn)–Ga–Sn–S supertetrahedral nanoclusters with relatively precise dopant positions. Journal of Materials Chemistry C, 2016, 4, 10435-10444.	2.7	31
33	General urea-assisted synthesis of carbon-coated metal phosphide nanoparticles for efficient hydrogen evolution electrocatalysis. Electrochimica Acta, 2016, 199, 99-107.	2.6	49
34	Well-dispersed CoS ₂ nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2016, 6, 4545-4553.	2.1	62
35	Metallic Co ₉ S ₈ nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2016, 4, 6860-6867.	5.2	265
36	Frontispiece: Coupling Mo ₂ C with Nitrogenâ€Rich Nanocarbon Leads to Efficient Hydrogenâ€Evolution Electrocatalytic Sites. Angewandte Chemie - International Edition, 2015, 54, .	7.2	4

Үіри Lіи

#	Article	IF	CITATIONS
37	Coupling Mo ₂ C with Nitrogenâ€Rich Nanocarbon Leads to Efficient Hydrogenâ€Evolution Electrocatalytic Sites. Angewandte Chemie - International Edition, 2015, 54, 10752-10757.	7.2	674
38	Carbon-Armored Co ₉ S ₈ Nanoparticles as All-pH Efficient and Durable H ₂ -Evolving Electrocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 980-988.	4.0	335
39	Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale, 2015, 7, 3130-3136.	2.8	133
40	Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16320-16326.	5.2	100
41	Li3V2(PO4)3 particles embedded in porous N-doped carbon as high-rate and long-life cathode material for Li-ion batteries. RSC Advances, 2015, 5, 78209-78214.	1.7	6
42	From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials. Inorganic Chemistry Frontiers, 2015, 2, 198-212.	3.0	48
43	Electrocatalytic H ₂ production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7, 2306-2316.	2.8	158
44	Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 2014, 6, 7255.	2.8	194
45	Facile precursor-mediated synthesis of porous core–shell-type Co3O4 octahedra with large surface area for photochemical water oxidation. RSC Advances, 2014, 4, 22951.	1.7	16