
## Charalampos Pontikoglou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11694810/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mesenchymal Stem Cells Derived from Wharton's Jelly of the Umbilical Cord: Biological<br>Properties and Emerging Clinical Applications. Current Stem Cell Research and Therapy, 2013, 8, 144-155.                                                         | 1.3 | 192       |
| 2  | Bone Marrow Mesenchymal Stem Cells: Biological Properties and Their Role in Hematopoiesis and<br>Hematopoietic Stem Cell Transplantation. Stem Cell Reviews and Reports, 2011, 7, 569-589.                                                                | 5.6 | 160       |
| 3  | Specific Lineage-Priming of Bone Marrow Mesenchymal Stem Cells Provides the Molecular Framework for Their Plasticity. Stem Cells, 2009, 27, 1142-1151.                                                                                                    | 3.2 | 110       |
| 4  | Reserves, Functional, Immunoregulatory, and Cytogenetic Properties of Bone Marrow Mesenchymal<br>Stem Cells in Patients with Myelodysplastic Syndromes. Stem Cells and Development, 2010, 19,<br>1043-1054.                                               | 2.1 | 63        |
| 5  | Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 102. | 5.5 | 62        |
| 6  | Chitosan/gelatin scaffolds support bone regeneration. Journal of Materials Science: Materials in<br>Medicine, 2018, 29, 59.                                                                                                                               | 3.6 | 56        |
| 7  | Bone regeneration: the stem/progenitor cells point of view. Journal of Cellular and Molecular<br>Medicine, 2010, 14, 103-115.                                                                                                                             | 3.6 | 50        |
| 8  | Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D<br>organic–inorganic composite scaffolds for bone repair. Materials Science and Engineering C, 2015, 48,<br>301-309.                                               | 7.3 | 45        |
| 9  | Myeloidâ€Đerived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment<br>Targets. HemaSphere, 2019, 3, e168.                                                                                                                      | 2.7 | 41        |
| 10 | Human bone marrow native mesenchymal stem cells. Regenerative Medicine, 2008, 3, 731-741.                                                                                                                                                                 | 1.7 | 39        |
| 11 | CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by<br>proâ€osteogenic and proâ€inflammatory cues. Journal of Cellular and Molecular Medicine, 2016, 20,<br>655-665.                                                      | 3.6 | 37        |
| 12 | CD200R/CD200 Inhibits Osteoclastogenesis: New Mechanism of Osteoclast Control by Mesenchymal<br>Stem Cells in Human. PLoS ONE, 2013, 8, e72831.                                                                                                           | 2.5 | 33        |
| 13 | Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 149, 233-242.                                                                   | 5.0 | 32        |
| 14 | Study of the Quantitative, Functional, Cytogenetic, and Immunoregulatory Properties of Bone<br>Marrow Mesenchymal Stem Cells in Patients with B-Cell Chronic Lymphocytic Leukemia. Stem Cells and<br>Development, 2013, 22, 1329-1341.                    | 2.1 | 27        |
| 15 | Pathophysiologic mechanisms, clinical features and treatment of idiopathic neutropenia. Expert<br>Review of Hematology, 2008, 1, 217-229.                                                                                                                 | 2.2 | 26        |
| 16 | Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes. Clinical and Developmental Immunology, 2013, 2013, 1-10.                                                                                                                         | 3.3 | 22        |
| 17 | Biologic Characteristics of Bone Marrow Mesenchymal Stem Cells in Myelodysplastic Syndromes.<br>Current Stem Cell Research and Therapy, 2011, 6, 122-130.                                                                                                 | 1.3 | 20        |
| 18 | Mesenchymal Stem Cells Contribute to the Abnormal Bone Marrow Microenvironment in Patients<br>with Chronic Idiopathic Neutropenia by Overproduction of Transforming Growth Factor-β1. Stem Cells<br>and Development, 2011, 20, 1309-1318.                 | 2.1 | 19        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pathophysiologic mechanisms and management of neutropenia associated with large granular<br>lymphocytic leukemia. Expert Review of Hematology, 2011, 4, 317-328.                                                           | 2.2 | 18        |
| 20 | High Frequency of Thyroid Disorders in Patients Presenting With Neutropenia to an Outpatient<br>Hematology Clinic STROBE-Compliant Article. Medicine (United States), 2015, 94, e886.                                      | 1.0 | 17        |
| 21 | Circulating Endothelial Progenitor Cells in Hypertensive Patients With Increased Arterial Stiffness.<br>Journal of Clinical Hypertension, 2014, 16, 295-300.                                                               | 2.0 | 16        |
| 22 | Evidence for downregulation of erythropoietin receptor in bone marrow erythroid cells of patients with chronic idiopathic neutropenia. Experimental Hematology, 2006, 34, 1312-1322.                                       | 0.4 | 15        |
| 23 | Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia.<br>Blood, 2021, 138, 1249-1257.                                                                                           | 1.4 | 15        |
| 24 | Wharton's Jelly Mesenchymal Stem Cell Response on Chitosan-graft-poly<br>(ε-caprolactone) Copolymer for Myocardium Tissue Engineering. Current Pharmaceutical<br>Design, 2014, 20, 2030-2039.                              | 1.9 | 13        |
| 25 | Increased Mobilization of Mesenchymal Stem Cells in Patients With Essential Hypertension: The Effect of Left Ventricular Hypertrophy. Journal of Clinical Hypertension, 2014, 16, 883-888.                                 | 2.0 | 10        |
| 26 | Osteogenic differentiation of bone marrow mesenchymal stem cells on chitosan/gelatin scaffolds: gene expression profile and mechanical analysis. Biomedical Materials (Bristol), 2020, 15, 064101.                         | 3.3 | 10        |
| 27 | The â^'509C/T polymorphism of transforming growth factorâ€Î²1 is associated with increased risk for<br>development of chronic idiopathic neutropenia. European Journal of Haematology, 2009, 83, 535-540.                  | 2.2 | 8         |
| 28 | Using Electronic Patient Reported Outcomes to Foster Palliative Cancer Care: The MyPal Approach. ,<br>2019, , .                                                                                                            |     | 8         |
| 29 | Endothelial progenitor cells as markers of severity in hypertrophic cardiomyopathy. European<br>Journal of Heart Failure, 2016, 18, 179-184.                                                                               | 7.1 | 6         |
| 30 | Increased levels of soluble flt-3 ligand in serum and long-term bone marrow culture supernatants in patients with chronic idiopathic neutropenia. British Journal of Haematology, 2006, 132, 637-639.                      | 2.5 | 5         |
| 31 | Increased proportion and altered properties of intermediate monocytes in the peripheral blood of patients with lower risk Myelodysplastic Syndrome. Blood Cells, Molecules, and Diseases, 2021, 86, 102507.                | 1.4 | 4         |
| 32 | Myelodysplastic Syndromes (MDS) Presenting with Isolated Thrombocytopenia: Characteristics,<br>Outcomes, and Clinical Presentation Differences from Immune Thrombocytopenic Purpura (ITP).<br>Blood, 2021, 138, 1535-1535. | 1.4 | 3         |
| 33 | Soluble c-kit ligand production by bone marrow stromal cells is independent of the degree of neutropenia in patients with chronic idiopathic neutropenia. Annals of Hematology, 2006, 85, 170-173.                         | 1.8 | 2         |
| 34 | Lymphopenia in patients with chronic idiopathic neutropenia is associated with decreased number of<br>Tâ€lymphocytes containing Tâ€cell receptor excision circles. European Journal of Haematology, 2012, 88,<br>210-223.  | 2.2 | 2         |
| 35 | Immunoglobulin and B-cell disturbances in patients with chronic idiopathic neutropenia. Clinical<br>Immunology, 2017, 183, 75-81.                                                                                          | 3.2 | 2         |
| 36 | Bone marrow-derived mesenchymal stem/stromal cells from patients with splenic marginal zone<br>lymphoma are intrinsically impaired and influence the malignant B-cells. Leukemia and Lymphoma, 2019,<br>60, 538-540.       | 1.3 | 2         |