

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11693641/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion. High<br>Energy Density Physics, 2020, 35, 100739.                                                                                                              | 0.4 | 12        |
| 2  | Laser-Target Experiments at PALS for Deuterium Plasma Beam Fusion. Acta Physica Polonica A, 2020, 138, 579-585.                                                                                                                                                 | 0.2 | 2         |
| 3  | Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy. , 2017, , .                                                                                                                                          |     | 2         |
| 4  | Road map to clean energy using laser beam ignition of boron-hydrogen fusion. Laser and Particle<br>Beams, 2017, 35, 730-740.                                                                                                                                    | 0.4 | 41        |
| 5  | Numerical studies on alpha production from high energy proton beam interaction with Boron.<br>Proceedings of SPIE, 2017, , .                                                                                                                                    | 0.8 | 0         |
| 6  | Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping. Journal of Physics: Conference Series, 2016, 717, 012095.                                                                                          | 0.3 | 6         |
| 7  | High efficient ultrahigh acceleration of plasma blocks by PW-ps laser pulses for producing fusion<br>flames in DT and HB11 of solid state density. Journal of Physics: Conference Series, 2016, 688, 012074.                                                    | 0.3 | 0         |
| 8  | Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor. High Power Laser Science and Engineering, 2016, 4, .                                                                                           | 2.0 | 9         |
| 9  | New scheme to trigger fusion in a compact magnetic fusion device by combining muon catalysis and alpha heating effects. High Power Laser Science and Engineering, 2016, 4, .                                                                                    | 2.0 | 0         |
| 10 | Picosecond-petawatt laser-block ignition for avalanche fusion of boron by ultrahigh acceleration and ultrahigh magnetic fields. Journal of Physics: Conference Series, 2016, 717, 012024.                                                                       | 0.3 | 3         |
| 11 | Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p- <sup>11</sup> B fuels. Proceedings of SPIE, 2015, , .                      | 0.8 | 1         |
| 12 | The effect of quantum correction on plasma electron heating in ultraviolet laser interaction.<br>Journal of Applied Physics, 2015, 117, .                                                                                                                       | 1.1 | 6         |
| 13 | Kilotesla Magnetic Assisted Fast Laser Ignited Boron-11 Hydrogen Fusion with Nonlinear Force Driven<br>Ultrahigh Accelerated Plasma Blocks. Journal of Fusion Energy, 2015, 34, 62-67.                                                                          | 0.5 | 9         |
| 14 | Enhanced laser ion acceleration with a multi-layer foam target assembly. Laser and Particle Beams, 2014, 32, 509-515.                                                                                                                                           | 0.4 | 13        |
| 15 | Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems.<br>Laser and Particle Beams, 2014, 32, 63-68.                                                                                                                    | 0.4 | 17        |
| 16 | Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser and Particle Beams, 2014, 32, 409-411.                                                                           | 0.4 | 24        |
| 17 | Electron heating enhancement by frequency-chirped laser pulses. Journal of Applied Physics, 2014, 116, .                                                                                                                                                        | 1.1 | 15        |
| 18 | Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2467-2470. | 0.9 | 7         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Candidates for Laser Fusion Energy with Minimized Radioactivity. Journal of Fusion Energy, 2013, 32, 298-303.                                                                           | 0.5 | 0         |
| 20 | Application of picosecond terawatt laser pulses for fast ignition of fusion. Laser and Particle Beams, 2013, 31, 249-256.                                                               | 0.4 | 4         |
| 21 | Laser fusion energy from p-7Li with minimized radioactivity. Laser and Particle Beams, 2012, 30, 459-463.                                                                               | 0.4 | 5         |
| 22 | Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion.<br>Laser and Particle Beams, 2012, 30, 233-242.                                       | 0.4 | 27        |
| 23 | Effect of quantum correction on the acceleration and delayed heating of plasma blocks. Physical<br>Review E, 2012, 85, 036404.                                                          | 0.8 | 16        |
| 24 | Fundamental difference of subpicosecond laser interaction compared to longer pulses for ultrahigh acceleration. , 2012, , .                                                             |     | 0         |
| 25 | Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of<br>Hydrogen Boron-11. Laser and Particle Beams, 2011, 29, 125-134.                   | 0.4 | 16        |
| 26 | Driven Subcritical Assembly Using a Cylindrical Inertial Electrostatic Confinement (IEC) Neutron<br>Source. Fusion Science and Technology, 2011, 60, 620-624.                           | 0.6 | 1         |
| 27 | Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel. Laser and Particle Beams, 2011, 29, 353-363. | 0.4 | 13        |
| 28 | Hydrodynamic studies of laser fusion using plasma block ignition driven by nonlinear ponderomotive forces. Journal of Physics: Conference Series, 2010, 244, 022002.                    | 0.3 | 5         |
| 29 | Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser and Particle Beams, 2010, 28, 101-107.                           | 0.4 | 26        |
| 30 | Collective stopping power in laser driven fusion plasmas for block ignition. Laser and Particle Beams, 2010, 28, 3-9.                                                                   | 0.4 | 5         |
| 31 | Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets.<br>Laser and Particle Beams, 2009, 27, 529-532.                                         | 0.4 | 57        |
| 32 | Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser and Particle Beams, 2009, 27, 149-156.              | 0.4 | 31        |
| 33 | Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11<br>Powered Space Propulsion. , 2009, , .                                          |     | Ο         |
| 34 | Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks. Laser and Particle Beams, 2009, 27, 233-241.             | 0.4 | 16        |
| 35 | Threshold for laser driven block ignition for fusion energy from hydrogen boron-11. Laser and Particle Beams, 2009, 27, 201-206.                                                        | 0.4 | 14        |
| 36 | Cylindrical IEC neutron source design for driven research reactor operation. Journal of Radioanalytical and Nuclear Chemistry, 2009, 282, 193-197.                                      | 0.7 | 1         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermal Transport Effect in Tokamaks and Block Ignition for Laser Fusion. Journal of Fusion Energy, 2009, 28, 135-138.                                                                                         | 0.5 | 3         |
| 38 | Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen–boron by nonlinear<br>force driven plasma blocks. Optics Communications, 2009, 282, 4124-4126.                                  | 1.0 | 33        |
| 39 | Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy<br>without radioactivity. Laser and Particle Beams, 2009, 27, 491-496.                                         | 0.4 | 21        |
| 40 | Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser and<br>Particle Beams, 2009, 27, 207-222.                                                                     | 0.4 | 70        |
| 41 | Reduction of Threshold for Laser Fusion Ignition by Nonlinear Force Driven Block Acceleration.<br>Fusion Science and Technology, 2009, 56, 384-390.                                                            | 0.6 | 0         |
| 42 | Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Applied Physics Letters, 2008, 93, .                                                         | 1.5 | 64        |
| 43 | Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser and Particle Beams, 2008, 26, 105-112.                                               | 0.4 | 30        |
| 44 | Single-shot laser driven inertial confinement fusion based on nanosecond and picosecond laser pulses. Journal of Physics: Conference Series, 2008, 112, 022025.                                                | 0.3 | 0         |
| 45 | Nuclear magic numbers based on a quarklike model is compared with the Boltzmann distribution model from nuclear abundance in the universe and low energy nuclear reactions. Physics Essays, 2008, 21, 200-206. | 0.1 | 7         |
| 46 | Nonlinear force driven skin layer acceleration of plasma blocks. Journal of Physics: Conference<br>Series, 2008, 112, 022073.                                                                                  | 0.3 | 1         |
| 47 | Fast ignition by laser driven particle beams of very high intensity. Physics of Plasmas, 2007, 14, 072701.                                                                                                     | 0.7 | 101       |
| 48 | Maruhn–Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions<br>LENR via a Compound Nucleus with Double Magic Numbers. Journal of Fusion Energy, 2007, 26, 349-355.              | 0.5 | 15        |
| 49 | Hydrodynamic Simulation of Laser-Driven Generation of Fast High-Density Plasma Blocks. AIP<br>Conference Proceedings, 2006, , .                                                                                | 0.3 | 0         |
| 50 | Numerical Investigation of the Rippling Effect at the Interaction of an Ultrashort Laser Pulse with<br>Inhomogeneous Plasma. AIP Conference Proceedings, 2006, , .                                             | 0.3 | 1         |
| 51 | Ablation of nonlinear-force driven plasma blocks for fast igniter application. , 2006, , .                                                                                                                     |     | 0         |
| 52 | Studies on laser-driven generation of fast high-density plasma blocks for fast ignition. Laser and<br>Particle Beams, 2006, 24, 249-254.                                                                       | 0.4 | 30        |
| 53 | Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Applied Physics B: Lasers and Optics, 2006, 82, 93-97.            | 1.1 | 19        |
| 54 | Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser and Particle Beams, 2006, 24, 15-25.                                                           | 0.4 | 35        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Stable dense plasma jets produced at laser power densities around 1014Wâ^•cm2. Physics of Plasmas, 2006, 13, 062704.                                                                                                            | 0.7 | 61        |
| 56 | Application of laser ion source for ion implantation technology. Vacuum, 2005, 78, 435-438.                                                                                                                                     | 1.6 | 15        |
| 57 | Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser and<br>Particle Beams, 2005, 23, 143-147.                                                                                        | 0.4 | 30        |
| 58 | Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser and Particle Beams, 2005, 23, 401-409.                                                                                     | 0.4 | 57        |
| 59 | Two-fluid computations of plasma block dynamics for numerical analyze of rippling effect. Laser and<br>Particle Beams, 2005, 23, 433-440.                                                                                       | 0.4 | 4         |
| 60 | Application of laser driven fast high density plasma blocks for ion implantation. Laser and Particle<br>Beams, 2005, 23, 467-473.                                                                                               | 0.4 | 12        |
| 61 | Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion.<br>Journal of Plasma Physics, 2005, 71, 35-51.                                                                                     | 0.7 | 22        |
| 62 | Fusion energy from plasma block ignition. Laser and Particle Beams, 2005, 23, 423-432.                                                                                                                                          | 0.4 | 37        |
| 63 | Single event laser fusion using ns-MJ laser pulses. Laser and Particle Beams, 2005, 23, 453-460.                                                                                                                                | 0.4 | 25        |
| 64 | Production of ultrahigh ion current densities at skin-layer subrelativistic laser–plasma interaction.<br>Plasma Physics and Controlled Fusion, 2004, 46, B541-B555.                                                             | 0.9 | 59        |
| 65 | The influence of pre-pulse plasma on ion and x-ray emission from Ta plasma produced by a high-energy<br>laser pulse. European Physical Journal D, 2004, 54, C385-C390.                                                          | 0.4 | 9         |
| 66 | Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse<br>laser-plasma interaction. European Physical Journal D, 2004, 54, C460-C467.                                                          | 0.4 | 12        |
| 67 | Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser–plasma interaction.<br>Applied Physics Letters, 2004, 85, 3041-3043.                                                                          | 1.5 | 44        |
| 68 | Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser and Particle Beams, 2004, 22, 83-87.                                              | 0.4 | 20        |
| 69 | Solutions of the nonlinear paraxial equation due to laser plasma–interactions. Laser and Particle<br>Beams, 2004, 22, 69-74.                                                                                                    | 0.4 | 9         |
| 70 | Skin-Depth Theory Explaining Anomalous Picosecond-Terawatt Laser Plasma Interaction II. European Physical Journal D, 2003, 53, 199-217.                                                                                         | 0.4 | 44        |
| 71 | Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse<br>laser-plasma interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315,<br>452-457. | 0.9 | 30        |
|    |                                                                                                                                                                                                                                 |     |           |

Screening effects in low energy nuclear reactions of importance to astrophysics. , 2003, , .

1

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Generation of multiply charged ions at low and high laser-power densities. Plasma Physics and<br>Controlled Fusion, 2003, 45, 585-599.                                                      | 0.9 | 48        |
| 74 | Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation. Plasma Physics and Controlled Fusion, 2003, 45, 1087-1093.                   | 0.9 | 30        |
| 75 | Single-event high-compression inertial confinement fusion at low temperatures compared with two-step fast ignitor. Journal of Plasma Physics, 2003, 69, 413-429.                            | 0.7 | 10        |
| 76 | STUDY OF COMPOUND NUCLEI PRODUCED IN LOW ENERGY NUCLEAR REACTIONS IN SOLIDS. , 2003, , .                                                                                                    |     | 1         |
| 77 | Fast ion emission from the plasma produced by the PALS laser system. Plasma Physics and Controlled Fusion, 2002, 44, 1277-1283.                                                             | 0.9 | 36        |
| 78 | Laser produced Ag ions for direct implantation. Review of Scientific Instruments, 2000, 71, 949-951.                                                                                        | 0.6 | 50        |
| 79 | Numerical programming of self-focusing at laser–plasma interaction. Laser and Particle Beams, 2000,<br>18, 59-72.                                                                           | 0.4 | 10        |
| 80 | Focusing and defocusing of the nonlinear paraxial equation at laser–plasma interaction. Laser and<br>Particle Beams, 2000, 18, 73-79.                                                       | 0.4 | 13        |
| 81 | Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser and Particle Beams, 2000, 18, 135-144.        | 0.4 | 68        |
| 82 | Laser induced direct implantation of ions. European Physical Journal D, 2000, 50, 81-90.                                                                                                    | 0.4 | 16        |
| 83 | Electron capture and violent acceleration by an extra-intense laser beam. Physical Review E, 1998, 58, 6575-6577.                                                                           | 0.8 | 79        |
| 84 | Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser and Particle Beams, 1997, 15, 565-574.                                    | 0.4 | 20        |
| 85 | Beam smoothing and temporal effects:Optimized preparation of laser beams for direct-drive inertial confinement fusion. Laser and Particle Beams, 1997, 15, 277-295.                         | 0.4 | 4         |
| 86 | Nonlinear compton effect and electron inelastic scattering by an intense stationary laser beam.<br>Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 231, 139-143. | 0.9 | 12        |
| 87 | Electron scattering by an intense continuous laser beam. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 220, 189-193.                                           | 0.9 | 34        |
| 88 | Diagnostics of picosecond laser pulses using non-linear forces of ponderomotive dynamics. Optics<br>Communications, 1996, 130, 283-287.                                                     | 1.0 | 2         |
| 89 | Depressed photoemission from Görlich cathodes at high laser light intensities. Journal of Applied Physics, 1995, 78, 5848-5850.                                                             | 1.1 | 7         |
| 90 | Energy spectra of electrons emitted from laser irradiated low-density gas and the correspondence principle of electromagnetic interaction. Laser and Particle Beams, 1995, 13, 71-81.       | 0.4 | 2         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | How double layers accelerate charged particles. Laser and Particle Beams, 1995, 13, 441-447.                                                                                                                                                                 | 0.4 | 6         |
| 92  | High energy gain by volume ignition-A tutorial. AIP Conference Proceedings, 1994, , .                                                                                                                                                                        | 0.3 | 1         |
| 93  | Numerical and theoretical studies on the ignition of ICF plasmas driven by ion beams. Il Nuovo<br>Cimento A, 1993, 106, 1873-1881.                                                                                                                           | 0.2 | 5         |
| 94  | Application of dense plasma beams to the development of a high-efficiency lateral injection laser amplifier. Laser and Particle Beams, 1993, 11, 443-453.                                                                                                    | 0.4 | 0         |
| 95  | 10-ps pulsation of laser plasma explained hydrodynamically by self-generated Bragg ripples and their decay and avoidance by smoothing. Laser and Particle Beams, 1992, 10, 155-162.                                                                          | 0.4 | 5         |
| 96  | Volume ignition of inertial confinement fusion of deuterium-helium(3) and hydrogen-boron(ll) clean<br>fusion fuel. Laser and Particle Beams, 1992, 10, 145-154.                                                                                              | 0.4 | 14        |
| 97  | On ponderomotive forces in laser beams. European Physical Journal D, 1992, 42, 639-642.                                                                                                                                                                      | 0.4 | 0         |
| 98  | Analysis of experiments on energetic ions from laser produced plasmas with reference to hot electrons and pulsation. European Physical Journal D, 1992, 42, 927-938.                                                                                         | 0.4 | 8         |
| 99  | Pulsation of laser–plasma interaction explained by density ripple buildup and relaxation for<br>understanding smoothing by random-phase plate, ISI, and broadband. Laser and Particle Beams, 1991, 9,<br>381-395.                                            | 0.4 | 5         |
| 100 | Acceleration of Electrons to TeV Energy by Lasers in Vacuum. , 1991, , 467-493.                                                                                                                                                                              |     | 2         |
| 101 | New Basic Theory from Laser-Plasma Double Layers: Generalization to Degenerate Electrons and Nuclei. , 1991, , 359-387.                                                                                                                                      |     | 0         |
| 102 | Plasma and surface tension model for explaining the surface effect of tritium generation at cold<br>fusion. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and<br>Chemical Physics, Biophysics, 1990, 12, 393-399.   | 0.4 | 18        |
| 103 | Longitudinal field components for laser beams in vacuum. Physical Review A, 1990, 41, 3727-3732.                                                                                                                                                             | 1.0 | 191       |
| 104 | Double layer effects causing nearly uniform striated second harmonic emission from a laser irradiated plasma corona. Laser and Particle Beams, 1990, 8, 33-49.                                                                                               | 0.4 | 3         |
| 105 | G. V. Sklizkov, editor, "The Delfin Laser Thermonuclear Installation: Operational Complex and Future<br>Directions,―translated by K. S. Hendzel, Nova Sciences Publishers, Commack, New York, 1988, 302<br>pages Laser and Particle Beams, 1990, 8, 369-370. | 0.4 | 0         |
| 106 | Acceleratoin of charged particles by lasers in vacuum. AIP Conference Proceedings, 1989, , .                                                                                                                                                                 | 0.3 | 0         |
| 107 | Volume compression and volume ignition of laser driven fusion pellets. Laser and Particle Beams, 1989, 7, 511-520.                                                                                                                                           | 0.4 | 11        |
| 108 | Volume ignition in pellet fusion. Nuclear Instruments and Methods in Physics Research, Section A:<br>Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 278, 110-113.                                                                    | 0.7 | 7         |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Debye length and surface tension in nuclei. Die Naturwissenschaften, 1989, 76, 214-215.                                                                                     | 0.6 | 6         |
| 110 | On the surface tension of plasmas. IEEE Transactions on Plasma Science, 1989, 17, 284-289.                                                                                  | 0.6 | 30        |
| 111 | Volume ignition of laser driven fusion pellets and double layer effects. Laser and Particle Beams, 1988, 6, 163-182.                                                        | 0.4 | 26        |
| 112 | A new hydrodynamic analysis of double layers. Laser and Particle Beams, 1987, 5, 269-286.                                                                                   | 0.4 | 7         |
| 113 | Hydrodynamic Analysis of the High Electrc Fields and Double Layers in Expanding Inhomogeneous<br>Plasmas. IEEE Transactions on Plasma Science, 1986, 14, 823-837.           | 0.6 | 16        |
| 114 | Strong internal electric fields in nonlinear force produced cavitons: laser acceleration of particles.<br>AIP Conference Proceedings, 1986, , .                             | 0.3 | 1         |
| 115 | A Laser Amplifier Based on Conversion of Particle Beam Kinetic Energy into Optical Energy. , 1986, ,<br>109-117.                                                            |     | 0         |
| 116 | Consequences of High Electric Fields in Laser Produced Plasmas. , 1986, , 347-369.                                                                                          |     | 0         |
| 117 | Double Layers in Laser Produced Plasmas. , 1986, , 329-346.                                                                                                                 |     | 0         |
| 118 | Laser focus accelerator by relativistic self-focusing and high electric fields in double layers of nonlinear force produced cavitons. AIP Conference Proceedings, 1985, , . | 0.3 | 2         |
| 119 | Electric fields inside plasmas and the resulting force densities in collisionless shock wave. Plasma<br>Physics and Controlled Fusion, 1985, 27, 1539-1540.                 | 0.9 | Ο         |
| 120 | New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Physical Review A, 1985, 31, 3473-3476.                             | 1.0 | 46        |
| 121 | Pellet fusion gain calculations modified by electric double layers and by spin polarized nuclei. Laser and Particle Beams, 1984, 2, 467-475.                                | 0.4 | 24        |
| 122 | Anomalous-Heat Conduction of Ion-Implanted Amorphous Layers in Silicon Crystals Using a<br>Laser-Probe Technique. Physica Status Solidi A, 1984, 81, K127-K130.             | 1.7 | 6         |
| 123 | Beam propagation in the paraxial approximation. Flow, Turbulence and Combustion, 1984, 41, 359-363.                                                                         | 0.2 | 2         |
| 124 | Absorption, Double Layers, and Dynamics at Laser-Plasma Interaction and Pellet Fusion Gains With Reheat. , 1984, , 437-459.                                                 |     | 2         |
| 125 | GeV IONS from Laser Produced Plasmas. , 1984, , 1111-1128.                                                                                                                  |     | 0         |
| 126 | Stresses in silicon crystals from ion-implanted amorphous regions. Applied Physics A: Solids and Surfaces, 1983, 32, 217-221.                                               | 1.4 | 20        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | High electrostatic fields at ponderomotive laser driving of plasmas by nonlinear forces. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 1983, 99, 89-93.                               | 0.9 | 10        |
| 128 | First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser and Particle Beams, 1983, 1, 283-304.            | 0.4 | 77        |
| 129 | Dynamic collisionless absorption of a laser pulse in a homogeneous plasma by nonlinear forces.<br>Physics of Fluids, 1982, 25, 1057.                                                                            | 1.4 | 17        |
| 130 | Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas. Physics of Fluids, 1982, 25, 2295.                                                                   | 1.4 | 52        |
| 131 | Relativistic filamentation of laser beams in plasma. Applied Physics B, Photophysics and Laser<br>Chemistry, 1982, 27, 157-159.                                                                                 | 1.5 | 2         |
| 132 | Quantum properties of collisions in plasmas at high temperatures. Societa Italiana Di Fisica Nuovo<br>Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1981, 64, 1-8.      | 0.2 | 17        |
| 133 | Higher order terms of the nonlinear forces in plasmas with collisions at laser interaction. Plasma<br>Physics, 1980, 22, 1043-1051.                                                                             | 0.9 | 14        |
| 134 | RESULTS ON INERTIAL CONFINEMENT NUCLEAR FUSION IN AUSTRALIA. The Review of Laser Engineering, 1980, 8, 263-271.                                                                                                 | 0.0 | 0         |
| 135 | Debye-Length Discrimination of Nonlinear Laser Forces Acting on Electrons in Tenuous Plasmas.<br>Physical Review Letters, 1979, 42, 776-779.                                                                    | 2.9 | 66        |
| 136 | Strong coupling of electrons to black body radiation at high temperatures. Physica Status Solidi (B):<br>Basic Research, 1978, 86, 685-690.                                                                     | 0.7 | 1         |
| 137 | Reasons for the change of fermi-dirac statistics to strong coupling at temperatures of mc 2. Lettere<br>Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1978, 22, 55-58.              | 0.4 | 1         |
| 138 | Increased Nuclear Fusion Yields of Inertially Confined DT Plasma due to Reheat. Zeitschrift Fur<br>Naturforschung - Section A Journal of Physical Sciences, 1978, 33, 890-894.                                  | 0.7 | 55        |
| 139 | Generation of MeV and GeV ions by relativistic selfâ€focusing from laserâ€irradiated targets. Journal of<br>Applied Physics, 1978, 49, 923-924.                                                                 | 1.1 | 22        |
| 140 | Evaluation of cross sections of theLi6(d, $\hat{A}\hat{I}$ ±) $\hat{I}$ ±reaction. Physical Review C, 1978, 18, 1127-1132.                                                                                      | 1.1 | 5         |
| 141 | On Thermalisation of Energetic Charged Particles in Fusion Plasma with Quantum Electrodynamic<br>Considerations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1977, 32,<br>538-543. | 0.7 | 11        |
| 142 | Advanced fuel in nuclear reaction feasibility using laser compression II. Nuclear Instruments & Methods, 1977, 144, 27-32.                                                                                      | 1.2 | 3         |
| 143 | Corrections of the long beating length in quantum modulated electron beams. Physica Status Solidi<br>(B): Basic Research, 1977, 80, 143-147.                                                                    | 0.7 | 6         |
| 144 | Super-high intensities of lasers by short-range relativistic self-focusing of the beams in plasma and dielectric swelling. Applied Physics Berlin, 1977, 13, 165-170.                                           | 1.4 | 20        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Nuclear Techniques for Directed Emission and Switched Operation of Grasers. , 1977, , 267-282.                                                                                                                    |     | 1         |
| 146 | Corrected Penetration Length of Alphas for Reheat Calculations. , 1977, , 1081-1101.                                                                                                                              |     | 3         |
| 147 | On the range of alpha-particles in laser-produced superdense fusion plasma. Nuclear Fusion, 1976, 16, 535-536.                                                                                                    | 1.6 | 22        |
| 148 | Quantum-mechanical modulation of electrons at photoemission. Societa Italiana Di Fisica Nuovo<br>Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1975, 26,<br>295-308.      | 0.2 | 5         |
| 149 | Total Reflection of Matter Waves: The Goos–Haenchen Effect for Grazing Incidence*. Journal of the<br>Optical Society of America, 1971, 61, 1640.                                                                  | 1.2 | 24        |
| 150 | Self-focusing and nonlinear acceleration process in laser produced plasma. Optical and Quantum Electronics, 1970, 2, 201-214.                                                                                     | 1.5 | 38        |
| 151 | Coherence of matter waves in the effect of electron waves modulated by laser beams in solids.<br>Physica Status Solidi (B): Basic Research, 1970, 42, 131-136.                                                    | 0.7 | 17        |
| 152 | Optical constants of fully ionized hydrogen plasma for laser radiation. Nuclear Fusion, 1970, 10, 111-116.                                                                                                        | 1.6 | 30        |
| 153 | MODULATION OF AN ELECTRON WAVE BY A LIGHT WAVE. Applied Physics Letters, 1969, 15, 349-351.                                                                                                                       | 1.5 | 93        |
| 154 | Thermosensitive Discontinuities and Hystereses of the Photoemission of Alkali–Antimonide Cathodes<br>at High Light Intensities. Physica Status Solidi (B): Basic Research, 1969, 33, 669-681.                     | 0.7 | 5         |
| 155 | Combined Infrared Photoemission From Cs <sub>3</sub> Sb. Physica Status Solidi (B): Basic Research, 1968, 27, 593-600.                                                                                            | 0.7 | 7         |
| 156 | Notizen: Beschleunigung von inhomogenen Plasmen durch Laserlicht. Zeitschrift Fur<br>Naturforschung - Section A Journal of Physical Sciences, 1967, 22, 278-280.                                                  | 0.7 | 64        |
| 157 | Intensitztshysterese der Photoemission von Multialkalikathoden bei 77 �K. European Physical Journal A,<br>1966, 190, 286-294.                                                                                     | 1.0 | 7         |
| 158 | Non-linearities and Discontinuities of the Photoemission from Multi-Alkali Cathodes at Nitrogen<br>Temperatures. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1965, 20,<br>1591-1599. | 0.7 | 5         |
| 159 | Notizen: Besonderheiten der Temperaturabhägigkeit der Photoemission von Multialkalikathoden.<br>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1960, 15, 1014-1016.                     | 0.7 | 8         |