
## John Ravits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11693162/publications.pdf Version: 2024-02-01



ΙΟΗΝ ΡΑνίτε

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nuclear RIPK1 promotes chromatin remodeling to mediate inflammatory response. Cell Research, 2022, 32, 621-637.                                                                                                                             | 12.0 | 18        |
| 2  | Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Systems, 2021, 12, 159-175.e9.                                                         | 6.2  | 33        |
| 3  | Unraveling molecular biology of C9ORF72 repeat expansions in amyotrophic lateral sclerosis-frontotemporal dementia: Implications for therapy. , 2021, , 19-47.                                                                              |      | 0         |
| 4  | An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.                                                                                                                      | 4.1  | 27        |
| 5  | Delivering Bad News in Amyotrophic Lateral Sclerosis. Neurology: Clinical Practice, 2021, 11, 521-526.                                                                                                                                      | 1.6  | 3         |
| 6  | Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience, 2020, 23, 615-624.                                                                                             | 14.8 | 157       |
| 7  | Predicting disease specific spinal motor neurons and glia in sporadic ALS. Neurobiology of Disease, 2019, 130, 104523.                                                                                                                      | 4.4  | 10        |
| 8  | Pathogenic Mechanisms and Therapy Development for C9orf72 Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Neurotherapeutics, 2019, 16, 1115-1132.                                                                                    | 4.4  | 30        |
| 9  | Antisense RNA foci are associated with nucleoli and TDP-43 mislocalization in C9orf72-ALS/FTD: a quantitative study. Acta Neuropathologica, 2019, 137, 527-530.                                                                             | 7.7  | 21        |
| 10 | Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent<br>neurodegeneration. Nature Neuroscience, 2019, 22, 180-190.                                                                                       | 14.8 | 345       |
| 11 | Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely<br>co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta<br>Neuropathologica, 2018, 135, 459-474. | 7.7  | 152       |
| 12 | Kinnier Wilson's puzzling features of amyotrophic lateral sclerosis. Journal of Neurology,<br>Neurosurgery and Psychiatry, 2018, 89, 657-666.                                                                                               | 1.9  | 4         |
| 13 | Transcriptome–pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathologica, 2018, 136, 405-423.                                                                   | 7.7  | 69        |
| 14 | TDP-43 protein variants as biomarkers in amyotrophic lateral sclerosis. BMC Neuroscience, 2017, 18, 20.                                                                                                                                     | 1.9  | 27        |
| 15 | Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 79-90.                                                          | 7.7  | 68        |
| 16 | Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nature Communications, 2016, 7, 12143.                                                                                     | 12.8 | 137       |
| 17 | Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense<br>Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 2016, 90, 535-550.                                                               | 8.1  | 437       |
| 18 | RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science, 2016, 353, 603-608.                                                                                                                           | 12.6 | 448       |

John Ravits

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sleep Apnea in Familial Dysautonomia: A Reflection of Apnea Pathogenesis. Journal of Clinical Sleep<br>Medicine, 2016, 12, 1583-1584.                                                                                                                              | 2.6  | 0         |
| 20 | Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurologic Clinics, 2015, 33, 855-876.                                                                                                                                                           | 1.8  | 199       |
| 21 | Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Experimental Neurology, 2014, 262, 121-126.                                                                                                                                             | 4.1  | 81        |
| 22 | Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a <i>C9ORF72</i> Repeat Expansion. Science Translational Medicine, 2013, 5, 208ra149.                                                                                                      | 12.4 | 586       |
| 23 | Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurology, The, 2013, 12, 310-322.                                                                                                                                                           | 10.2 | 454       |
| 24 | Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2234.e13-2234.e19.                                                                                           | 3.1  | 59        |
| 25 | Targeted degradation of sense and antisense <i>C9orf72</i> RNA foci as therapy for ALS and frontotemporal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4530-9.                                       | 7.1  | 508       |
| 26 | Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling<br>us about pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 5-18.                                                        | 1.7  | 142       |
| 27 | Aberrant Neuregulin 1 Signaling in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2012, 71, 104-115.                                                                                                                         | 1.7  | 62        |
| 28 | Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.<br>Nature Neuroscience, 2012, 15, 1488-1497.                                                                                                                     | 14.8 | 628       |
| 29 | Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology. Human Molecular Genetics, 2010, 19, 313-328.                                                                                                                | 2.9  | 114       |
| 30 | TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely<br>distributed in the lower motor neuron columns independent of disease spread. Amyotrophic Lateral<br>Sclerosis and Other Motor Neuron Disorders, 2010, 11, 321-327. | 2.1  | 20        |
| 31 | Implications of ALS focality: Rostral-caudal distribution of lower motor neuron loss postmortem.<br>Neurology, 2007, 68, 1576-1582.                                                                                                                                | 1.1  | 142       |
| 32 | Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i> mutations. Annals of Neurology, 2007, 61, 427-434.                                                                                   | 5.3  | 840       |
| 33 | Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial.<br>Lancet Neurology, The, 2007, 6, 1045-1053.                                                                                                                | 10.2 | 610       |
| 34 | Clinical and electromyographic studies of postpoliomyelitis muscular atrophy. Muscle and Nerve, 1990, 13, 667-674.                                                                                                                                                 | 2.2  | 44        |
| 35 | A Long-Term Follow-up Study of Patients with Post-Poliomyelitis Neuromuscular Symptoms. New<br>England Journal of Medicine, 1986, 314, 959-963.                                                                                                                    | 27.0 | 350       |