Ann P Chidgey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1169295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Thymic Regeneration in Mice and Humans following Androgen Blockade. Journal of Immunology, 2005, 175, 2741-2753.	0.4	431
2	Thymic involution and immune reconstitution. Trends in Immunology, 2009, 30, 366-373.	2.9	428
3	Effects of Castration on Thymocyte Development in Two Different Models of Thymic Involution. Journal of Immunology, 2005, 175, 2982-2993.	0.4	207
4	Analysis of thymic stromal cell populations using flow cytometry. Journal of Immunological Methods, 2002, 260, 15-28.	0.6	180
5	Multilineage Potential and Self-Renewal Define an Epithelial Progenitor Cell Population in the Adult Thymus. Cell Reports, 2014, 8, 1198-1209.	2.9	144
6	Characterization of the thymic IL-7 niche in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1512-1517.	3.3	131
7	Enhanced Immune System Regeneration in Humans Following Allogeneic or Autologous Hemopoietic Stem Cell Transplantation by Temporary Sex Steroid Blockade. Clinical Cancer Research, 2008, 14, 1138-1149.	3.2	117
8	The role of sex steroids and gonadectomy in the control of thymic involution. Cellular Immunology, 2008, 252, 122-138.	1.4	112
9	Tolerance strategies for stem-cell-based therapies. Nature, 2008, 453, 330-337.	13.7	106
10	Impact of niche aging on thymic regeneration and immune reconstitution. Seminars in Immunology, 2007, 19, 331-340.	2.7	98
11	The Lymphotoxin Pathway Regulates Aire-Independent Expression of Ectopic Genes and Chemokines in Thymic Stromal Cells. Journal of Immunology, 2008, 180, 5384-5392.	0.4	96
12	Enhanced Immune Reconstitution by Sex Steroid Ablation following Allogeneic Hemopoietic Stem Cell Transplantation. Journal of Immunology, 2007, 178, 7473-7484.	0.4	95
13	Sex Steroid Ablation Enhances Lymphoid Recovery Following Autologous Hematopoietic Stem Cell Transplantation. Transplantation, 2005, 80, 1604-1613.	0.5	94
14	Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nature Communications, 2019, 10, 3031.	5.8	91
15	Redefining epithelial progenitor potential in the developing thymus. European Journal of Immunology, 2007, 37, 2411-2418.	1.6	86
16	Ablation and Regeneration of Tolerance-Inducing Medullary Thymic Epithelial Cells after Cyclosporine, Cyclophosphamide, and Dexamethasone Treatment. Journal of Immunology, 2009, 183, 823-831.	0.4	83
17	Controlling the thymic microenvironment. Current Opinion in Immunology, 2005, 17, 137-143.	2.4	82
18	Unbiased analysis, enrichment and purification of thymic stromal cells. Journal of Immunological Methods, 2008, 329, 56-66.	0.6	75

2

ANN P CHIDGEY

#	Article	IF	CITATIONS
19	Luteinizing Hormone-Releasing Hormone Enhances T Cell Recovery following Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2009, 182, 5846-5854.	0.4	75
20	Purified enzymes improve isolation and characterization of the adult thymic epithelium. Journal of Immunological Methods, 2012, 385, 23-34.	0.6	68
21	A Unique Thymic Fibroblast Population Revealed by the Monoclonal Antibody MTS-15. Journal of Immunology, 2007, 178, 4956-4965.	0.4	58
22	Sex Steroid Ablation Enhances Hematopoietic Recovery following Cytotoxic Antineoplastic Therapy in Aged Mice. Journal of Immunology, 2009, 183, 7084-7094.	0.4	56
23	Sex Steroid Ablation Enhances Immune Reconstitution Following Cytotoxic Antineoplastic Therapy in Young Mice. Journal of Immunology, 2010, 184, 6014-6024.	0.4	56
24	Native thymic extracellular matrix improves inÂvivo thymic organoid T cell output, and drives inÂvitro thymic epithelial cell differentiation. Biomaterials, 2017, 118, 1-15.	5.7	51
25	Thymic Involution: Where Endocrinology Meets Immunology. NeuroImmunoModulation, 2011, 18, 281-289.	0.9	50
26	Withdrawal of Sex Steroids Reverses Age- and Chemotherapy-Related Defects in Bone Marrow Lymphopoiesis. Journal of Immunology, 2009, 182, 6247-6260.	0.4	46
27	Interplay between Follistatin, Activin A, and BMP4 Signaling Regulates Postnatal Thymic Epithelial Progenitor Cell Differentiation during Aging. Cell Reports, 2019, 27, 3887-3901.e4.	2.9	46
28	FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors. Stem Cell Reports, 2014, 2, 925-937.	2.3	42
29	In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomaterials Science, 2016, 4, 1123-1131.	2.6	39
30	Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nature Cell Biology, 2020, 22, 60-73.	4.6	37
31	Thymic Deletion and Regulatory T Cells Prevent Antimyeloperoxidase GN. Journal of the American Society of Nephrology: JASN, 2013, 24, 573-585.	3.0	35
32	Getting back at nature: understanding thymic development and overcoming its atrophy. Current Opinion in Pharmacology, 2010, 10, 425-433.	1.7	34
33	Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends in Immunology, 2010, 31, 191-198.	2.9	33
34	Enhanced Hematopoietic Stem Cell Function Mediates Immune Regeneration following Sex Steroid Blockade. Stem Cell Reports, 2015, 4, 445-458.	2.3	33
35	VEGF-mediated cross-talk within the neonatal murine thymus. Blood, 2009, 113, 2723-2731.	0.6	32
36	Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Seminars in Immunopathology, 2008, 30, 457-477.	2.8	28

ANN P CHIDGEY

#	Article	IF	CITATIONS
37	A novel Foxn1 ^{eGFP/+} mouse model identifies Bmp4â€induced maintenance of <i>Foxn1</i> expression and thymic epithelial progenitor populations. European Journal of Immunology, 2017, 47, 291-304.	1.6	28
38	Impact of the Neuroendocrine System on Thymus and Bone Marrow Function. NeuroImmunoModulation, 2008, 15, 7-18.	0.9	27
39	Immune Privilege for Stem Cells: Not as Simple as It Looked. Cell Stem Cell, 2008, 3, 357-358.	5.2	26
40	Thymic generation and regeneration: a new paradigm for establishing clinical tolerance of stem cell-based therapies. Current Opinion in Biotechnology, 2007, 18, 441-447.	3.3	25
41	Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology, 2015, 61, 504-514.	1.4	25
42	Androgen depletion increases the efficacy of bone marrow transplantation in ameliorating experimental autoimmune encephalomyelitis. Blood, 2009, 113, 204-213.	0.6	22
43	Inflammation and Thymus Ageing. Frontiers of Hormone Research, 2017, 48, 19-36.	1.0	22
44	New role for the (pro)renin receptor in T-cell development. Blood, 2015, 126, 504-507.	0.6	20
45	Thymic stromal cells and positive selection. Review article. Apmis, 2001, 109, 481-492.	0.9	20
46	The Contribution of Thymic Stromal Abnormalities to Autoimmune Disease. Critical Reviews in Immunology, 2011, 31, 171-187.	1.0	19
47	The role of Tenascin C in the lymphoid progenitor cell niche. Experimental Hematology, 2013, 41, 1050-1061.	0.2	18
48	Gender Disparity Impacts on Thymus Aging and LHRH Receptor Antagonist-Induced Thymic Reconstitution Following Chemotherapeutic Damage. Frontiers in Immunology, 2020, 11, 302.	2.2	17
49	Isolation, Characterization, and Reaggregate Culture of Thymic Epithelial Cells. Methods in Molecular Biology, 2012, 945, 251-272.	0.4	14
50	Regeneration of dendritic cells in aged mice. Cellular and Molecular Immunology, 2010, 7, 108-115.	4.8	13
51	Gelatin-Based 3D Microgels for In Vitro T Lineage Cell Generation. ACS Biomaterials Science and Engineering, 2020, 6, 2198-2208.	2.6	13
52	An Adult Thymic Stromal-Cell Suspension Model forin VitroPositive Selection. Autoimmunity, 1998, 6, 157-170.	0.6	12
53	Stem cells—meet immunity. Journal of Molecular Medicine, 2009, 87, 1061-1069.	1.7	10
54	Autoimmune-Mediated Thymic Atrophy Is Accelerated but Reversible in RelB-Deficient Mice. Frontiers in Immunology, 2018, 9, 1092.	2.2	8

ANN P CHIDGEY

#	Article	IF	CITATIONS
55	Rewiring Immunity: Generating a Functional Thymus from hESCs… Are We There Yet?. Cell Stem Cell, 2013, 13, 135-136.	5.2	4
56	Adding Insult to Injury: Improving the Regenerative Capacity of the Aged Thymus Following Clinically Induced Damage. , 2019, , 273-294.		4
57	Editorial: New Insights Into Thymic Functions During Stress, Aging, and in Disease Settings. Frontiers in Immunology, 2020, 11, 591936.	2.2	2
58	Effects of growth hormone in enhancing thymic regrowth and T-cell reconstitution. Expert Review of Clinical Immunology, 2008, 4, 433-439.	1.3	1
59	The Global Thymus Network: past, present and future. Trends in Immunology, 2009, 30, 191-192.	2.9	1
60	Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation. , 2009, , 1571-1609.		1
61	Interplay between Follistatin, Activin A and Bmp4 Signaling Regulates Postnatal Thymic Epithelial Progenitor Cell Differentiation During Aging. SSRN Electronic Journal, 0, , .	0.4	1
62	Strategies for Thymic Regeneration: Recent Advances Towards Clinical Therapy. , 2016, , 57-94.		0
63	Epithelial Stem Cells and the Development of the Thymus, Parathyroid, and Skin. , 2009, , 405-437.		0
64	The Immunogenicity of Stem Cells and Thymus-Based Strategies to Minimise Immune Rejection. , 2013, , 201-223.		0