Ds Lubinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11692448/publications.pdf

Version: 2024-02-01

		567281	752698
55	582	15	20 g-index
papers	citations	h-index	g-index
			0.5
55	55	55	95
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Some biorthogonal polynomials arising in numerical analysis and approximation theory. Journal of Computational and Applied Mathematics, 2022, 403, 113842.	2.0	2
2	Asymptotic zero distribution of biorthogonal polynomials. Journal of Approximation Theory, 2015, 190, 26-49.	0.8	7
3	Polynomials biorthogonal to dilations of measures, and their asymptotics. Journal of Mathematical Analysis and Applications, 2013, 397, 91-108.	1.0	2
4	Some recent methods for establishing universality limits. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e2750-e2765.	1.1	7
5	Universality limits for random matrices and de Branges spaces of entire functions. Journal of Functional Analysis, 2009, 256, 3688-3729.	1.4	19
6	Orthogonal polynomials for weights close to indeterminacy. Journal of Approximation Theory, 2007, 147, 129-168.	0.8	1
7	On the Bernstein Constants of Polynomial Approximation. Constructive Approximation, 2007, 25, 303-366.	3.0	16
8	Condition numbers of Hankel matrices for exponential weights. Journal of Mathematical Analysis and Applications, 2006, 314, 266-285.	1.0	6
9	Weights whose biorthogonal polynomials admit a Rodrigues formula. Journal of Mathematical Analysis and Applications, 2006, 324, 805-819.	1.0	5
10	A Hilbert transform representation of the error in Lagrange interpolation. Journal of Approximation Theory, 2004, 129, 94-100.	0.8	4
11	Smallest eigenvalues of Hankel matrices for exponential weights. Journal of Mathematical Analysis and Applications, 2004, 293, 476-495.	1.0	15
12	Best approximation and interpolation of $(1+(ax)2)\hat{a}^{-1}$ and its transforms. Journal of Approximation Theory, 2003, 125, 106-115.	0.8	15
13	Lp Markov–Bernstein Inequalities on All Arcs of the Circle. Journal of Approximation Theory, 2002, 116, 343-368.	0.8	6
14	On Weighted Mean Convergence of Lagrange Interpolation for General Arrays. Journal of Approximation Theory, 2002, 118, 153-162.	0.8	3
15	Lp boundedness of (C,1) means of orthonormal expansions for general exponential weights. Journal of Computational and Applied Mathematics, 2002, 145, 387-405.	2.0	5
16	Mathematica evidence that Ramanujan kills Baker–Gammel–Wills. Applied Mathematics and Computation, 2002, 128, 289-302.	2.2	2
17	Lp Markov–Bernstein Inequalities on Arcs of the Circle. Journal of Approximation Theory, 2001, 108, 1-17.	0.8	11
18	(C,Â1) Means of Orthonormal Expansions for Exponential Weights. Journal of Approximation Theory, 2000, 103, 151-182.	0.8	9

#	Article	IF	CITATIONS
19	On Mean Convergence of Lagrange Interpolation for General Arrays. Journal of Approximation Theory, 2000, 104, 220-225.	0.8	4
20	On Boundedness of Lagrange Interpolation inLp,p<1. Journal of Approximation Theory, 1999, 96, 399-404.	0.8	1
21	The Size of (q;Âq)nforqon the Unit Circle. Journal of Number Theory, 1999, 76, 217-247.	0.4	22
22	Jackson Theorems for Erdol̇̀ <s 1998,="" 333-382.<="" 94,="" approximation="" inlp(0<p⩽∞).="" journal="" of="" td="" theory,="" weights=""><td>0.8</td><td>14</td></s>	0.8	14
23	Bounds for orthogonal polynomials for exponential weights. Journal of Computational and Applied Mathematics, 1998, 99, 475-490.	2.0	9
24	The weighted Lp-norms of orthonormal polynomials for Erd \tilde{A} \P s weights. Computers and Mathematics With Applications, 1997, 33, 151-163.	2.7	5
25	On the diagonal Pad $ ilde{A}$ © approximants of meromorphic functions. Indagationes Mathematicae, 1996, 7, 97-110.	0.4	7
26	Nuttall-Pommerenke theorems for homogeneous Pad $\tilde{\mathbb{A}}$ © approximants. Journal of Computational and Applied Mathematics, 1996, 67, 141-146.	2.0	8
27	A direct approach to convergence of multivariate, nonhomogeneous, $Pad\tilde{A}$ @ approximants. Journal of Computational and Applied Mathematics, 1996, 69, 353-366.	2.0	10
28	Orthogonal Polynomials and Christoffel Functions for Exp ($\hat{a}^{"} X a$), a $\hat{a}\%$! Journal of Approximation Theory, 1995, 80, 219-252.	0.8	12
29	Full quadrature sums for pth powers of polynomials with Freud weights. Journal of Computational and Applied Mathematics, 1995, 60, 285-296.	2.0	9
30	STRONG ASYMPTOTICS FOR POLYNOMIALS BIORTHOGONAL TO POWERS OF LOG X. Analysis (Germany), 1994, 14, 341-380.	0.4	10
31	The Weighted Lp-Norms of Orthonormal Polynomials for Freud Weights. Journal of Approximation Theory, 1994, 77, 42-50.	0.8	24
32	Lp Markov-Bernstein Inequalities for Freud Weights. Journal of Approximation Theory, 1994, 77, 229-248.	0.8	22
33	Mean convergence of Lagrange interpolation for Erdolks weights. Journal of Computational and Applied Mathematics, 1993, 47, 369-390.	2.0	7
34	Convergence of simultaneous Hermite-Padé approximants to the n-tuple of q-hypergeometric series $\{2\hat{l}_{j}^{\dagger}(A,\hat{l}_{j}),(1,1);z)\}$ jn=1. Journal of Computational and Applied Mathematics, 1993, 49, 37-43.	2.0	2
35	Orthogonal expansions and the error of weighted polynomial approximation for $\operatorname{erd} \tilde{A} \P$ s weights. Numerical Functional Analysis and Optimization, 1992, 13, 327-347.	1.4	4
36	Hermite and Hermite-Fejér interpolation and associated product integration rules on the real line: The Lâ^ž theory. Journal of Approximation Theory, 1992, 70, 284-334.	0.8	16

#	Article	IF	Citations
37	Lp Markov-Bernstein inequalities for Erdős weights. Journal of Approximation Theory, 1991, 65, 301-321.	0.8	8
38	Irregular distribution of $\{n\hat{l}^2\}$, $n=1,2,3,\hat{a}\in \ \ $, quadrature of singular integrands, and curious basic hypergeometric series. Indagationes Mathematicae, 1991, 2, 469-481.	0.4	9
39	The supremum norm of reciprocals of Christoffel functions for Erdős weights. Journal of Approximation Theory, 1990, 63, 255-266.	0.8	9
40	Lâ^ž Markov and Bernstein inequalities for Erdös weights. Journal of Approximation Theory, 1990, 60, 188-230.	0.8	16
41	Asymptotic behaviour of the ratio of Christoffel functions for weights W2 and W2g. Journal of Approximation Theory, 1988, 52, 293-314.	0.8	0
42	Convergence theorems for rows of differential and algebraic Hermite-Pad \tilde{A} © approximations. Journal of Computational and Applied Mathematics, 1987, 18, 29-52.	2.0	21
43	Canonical products and the weights $\exp(\hat{a}^{\hat{a}}\hat{A}_{x}^{\dagger}\hat{A}_{z}^{\dagger}\hat{A}$	0.8	31
44	Weights on the real line that admit good relative polynomial approximation, with applications. Journal of Approximation Theory, 1987, 49, 170-195.	0.8	27
45	Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules. Journal of Computational and Applied Mathematics, 1987, 17, 79-103.	2.0	27
46	A product quadrature algorithm by Hermite interpolation. Journal of Computational and Applied Mathematics, 1987, 17, 237-269.	2.0	3
47	Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives. Journal of Approximation Theory, 1986, 46, 297-313.	0.8	28
48	Estimates of Freud-Christoffel functions for some weights with the whole real line as support. Journal of Approximation Theory, 1985, 44, 343-379.	0.8	20
49	Note on polynomial approximation of monomials and diophantine approximation. Journal of Approximation Theory, 1985, 43, 29-35.	0.8	7
50	On convergence of rational and best rational approximations. Journal of Mathematical Analysis and Applications, 1984, 98, 419-434.	1.0	5
51	Product integration of logarithmic singular integrands based on cubic splines. Journal of Computational and Applied Mathematics, 1984, 11, 353-366.	2.0	21
52	Convergence of exponential interpolation for completely bounded functions. Journal of Approximation Theory, 1983, 39, 185-201.	0.8	2
53	Best approximation over the whole complex plane. Journal of Approximation Theory, 1982, 36, 277-293.	0.8	1
54	Diagonal Pad \tilde{A} approximants and capacity. Journal of Mathematical Analysis and Applications, 1980, 78, 58-67.	1.0	21

Ds Lubinsky

#	Article	IF	CITATIONS
55	On non-diagonal Pad $\tilde{\mathbb{A}}$ approximants. Journal of Mathematical Analysis and Applications, 1980, 78, 405-428.	1.0	5