Han Mo Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11691964/publications.pdf

Version: 2024-02-01

97 papers 4,867 citations

94433 37 h-index 95266 68 g-index

97 all docs 97 docs citations

97 times ranked 4803 citing authors

#	Article	IF	CITATIONS
1	Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method. Macromolecular Chemistry and Physics, 2009, 210, 1247-1254.	2.2	267
2	Properties of Graphene/Waterborne Polyurethane Nanocomposites Cast from Colloidal Dispersion Mixtures. Journal of Macromolecular Science - Physics, 2012, 51, 197-207.	1.0	263
3	Morphology and properties of waterborne polyurethane/clay nanocomposites. European Polymer Journal, 2003, 39, 85-91.	5.4	252
4	Graphite oxides as effective fire retardants of epoxy resin. Macromolecular Research, 2011, 19, 66-71.	2.4	242
5	Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polymer International, 2009, 58, 412-417.	3.1	230
6	Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macromolecular Chemistry and Physics, 2008, 209, 2487-2493.	2.2	223
7	Graphene Modified Lipophilically by Stearic Acid and its Composite With Low Density Polyethylene. Journal of Macromolecular Science - Physics, 2014, 53, 1193-1204.	1.0	182
8	Compatibility of Thermally Reduced Graphene with Polyesters. Journal of Macromolecular Science - Physics, 2016, 55, 1099-1110.	1.0	175
9	Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2652-2657.	2.1	128
10	Shape memory polyurethane containing amorphous reversible phase. Journal of Materials Science, 2000, 35, 1579-1583.	3.7	117
11	Morphological, thermal and rheological properties of the blends polypropylene/nylon-6, polypropylene/nylon-6/(maleic anhydride-g-polypropylene) and (maleic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T	f 5 Ω 337	Td ı(ıa nhydride
12	Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on physical properties. Macromolecular Research, 2011, 19, 809-814.	2.4	102
13	Water vapor permeability of shape memory polyurethane with amorphous reversible phase. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3009-3017.	2.1	97
14	A Pickering emulsion route to a stearic acid/graphene core–shell composite phase change material. Carbon, 2016, 99, 49-57.	10.3	97
15	Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments. Polymer International, 2000, 49, 1714-1721.	3.1	87
16	Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. European Polymer Journal, 2001, 37, 2245-2252.	5.4	81
17	Sound damping of a polyurethane foam nanocomposite. Macromolecular Research, 2007, 15, 443-448.	2.4	81
18	Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Solar Energy Materials and Solar Cells, 2015, 137, 227-234.	6.2	80

#	Article	IF	Citations
19	Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Materials Chemistry and Physics, 2015, 153, 291-300.	4.0	78
20	Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. European Polymer Journal, 2013, 49, 3889-3896.	5.4	76
21	Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin, 2015, 70, 651-657.	5.2	72
22	Preparation and Characterization of Poly(ethylene oxide)/Graphene Nanocomposites from an Aqueous Medium. Journal of Macromolecular Science - Physics, 2010, 49, 802-809.	1.0	65
23	Physical properties of ABS/SMA/nylon-6 ternary blends: effect of blending sequence. Polymer, 1993, 34, 2075-2080.	3.8	64
24	Properties of Graphene/Shape Memory Thermoplastic Polyurethane Composites Actuating by Various Methods. Materials, 2014, 7, 1520-1538.	2.9	63
25	Shape memory polyurethane nanocomposites with functionalized graphene. Smart Materials and Structures, 2012, 21, 075017.	3.5	61
26	Synthesis and characterization of novel polyurethanes based on <i>N</i> ¹ , <i>N</i> ⁴ â€bis[(4â€hydroxyphenyl)methylene]succinohydrazide hard segment. Journal of Applied Polymer Science, 2008, 110, 2315-2320.	2.6	59
27	Novel Thermoresponsive Polymers Tunable by pH. Macromolecules, 2011, 44, 1628-1634.	4.8	58
28	Properties of Thermoplastic Polyurethane/Functionalised Graphene Sheet Nanocomposites Prepared by the <i>in Situ</i> Polymerisation Method. Polymers and Polymer Composites, 2010, 18, 351-358.	1.9	57
29	Synthesis, characterization of novel dihydrazide containing polyurethanes based on <i>N</i> ¹ , <i>N</i> ² â€bis[(4â€hydroxyphenyl)methylene]ethanedihydrazide and various diisocyanates. Journal of Applied Polymer Science, 2008, 107, 3401-3407.	2.6	55
30	Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold ofÂelectrical conductivity. Polymer, 2014, 55, 4709-4719.	3.8	55
31	Thermoresponsive graphene nanosheets by functionalization with polymer brushes. Polymer, 2012, 53, 316-323.	3.8	53
32	Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl)iminomethyl}phenol. Macromolecular Research, 2008, 16, 194-199.	2.4	51
33	Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties. Polymer Chemistry, 2014, 5, 2411.	3.9	49
34	Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Composites Science and Technology, 2008, 68, 1919-1926.	7.8	47
35	Synthesis and characterization of novel Schiff base polyurethanes. Journal of Applied Polymer Science, 2009, 113, 2747-2754.	2.6	47
36	Waterborne polyurethane modified with poly(ethylene glycol) macromer for waterproof breathable coating. Progress in Organic Coatings, 2017, 103, 69-75.	3.9	46

#	Article	lF	CITATIONS
37	Study on the Shape Memory Polyamides. Synthesis and Thermomechanical Properties of Polycaprolactone-Polyamide Block Copolymer. Polymer Journal, 2000, 32, 23-28.	2.7	41
38	Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Polymer International, 1993, 31, 329-333.	3.1	36
39	The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polymer International, 2013, 62, 54-63.	3.1	36
40	Alumina-coated graphene nanosheet and its composite of acrylic rubber. Journal of Colloid and Interface Science, 2014, 416, 38-43.	9.4	36
41	Super-tough functionalized graphene paper as a high-capacity anode for lithium ion batteries. Chemical Engineering Journal, 2014, 250, 257-266.	12.7	35
42	Ultralow density polyethylene blends with polypropylene. Polymer Engineering and Science, 1991, 31, 944-953.	3.1	33
43	Structure and properties of EVOH/organoclay nanocomposites. Journal of Materials Science, 2005, 40, 3783-3787.	3.7	33
44	High performance UV curable polyurethane dispersions by incorporating multifunctional extender. Progress in Organic Coatings, 2007, 60, 17-23.	3.9	32
45	Solid-state functionalization of graphene with amino acids toward water-dispersity: implications on a composite with polyaniline and its characteristics as a supercapacitor electrode material. Journal of Materials Chemistry A, 2014, 2, 12526.	10.3	32
46	Properties of waterborne polyurethane/nanosilica composite. Macromolecular Research, 2003, 11, 198-201.	2.4	31
47	Morphology and properties of polyacrylonitrile/Na-MMT nanocomposites prepared viain-situ polymerization with macroazoinitiator. Macromolecular Research, 2006, 14, 312-317.	2.4	30
48	Properties of polythiourethanes prepared by thiol–isocyanate click reaction. Journal of Applied Polymer Science, 2018, 135, 46070.	2.6	29
49	Binary blends of nylons with ethylene vinyl alcohol copolymers: Morphological, thermal, rheological, and mechanical behavior. Polymer Engineering and Science, 1990, 30, 341-349.	3.1	27
50	The effects of graphene on the properties of acrylic pressure-sensitive adhesive. Journal of Industrial and Engineering Chemistry, 2014, 20, 4108-4111.	5.8	26
51	Shape memory effect of poly(methylene-1,3-cyclopentane) and its copolymer with polyethylene. Polymer International, 2002, 51, 275-280.	3.1	25
52	Compatibilizing effect of graphite oxide in graphene/PMMA nanocomposites. Macromolecular Research, 2009, 17, 626-629.	2.4	25
53	Electrically Conductive Graphene/Poly(methyl methacrylate) Composites with Ultra‣ow Percolation Threshold by Electrostatic Selfâ€Assembly in Aqueous Medium. Macromolecular Chemistry and Physics, 2015, 216, 770-782.	2.2	23
54	Effect of pyrene treatment on the properties of graphene/epoxy nanocomposites. Macromolecular Research, 2010, 18, 1125-1128.	2.4	22

#	Article	IF	Citations
55	Aluminum hydroxide–CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity. Journal of Industrial and Engineering Chemistry, 2016, 33, 150-155.	5.8	21
56	Controlled oxygen functional groups on reduced graphene using rate of temperature for advanced sorption process. Journal of Environmental Chemical Engineering, 2020, 8, 103749.	6.7	21
57	Properties of Waterborne Polyurethane/PMMA/Clay Hybrid Materials. Journal of Macromolecular Science - Physics, 2003, 42, 1153-1167.	1.0	20
58	Characterization of air-blown asphalt/trans-polyoctenamer rubber blends. Journal of Industrial and Engineering Chemistry, 2013, 19, 645-649.	5.8	19
59	Compatibility of Functionalized Graphene with Polyethylene and Its Copolymers. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	19
60	Compatibilizing effect of polyarylate-polyamide-6 block copolymers on polyarylate/polyamide-6 blends: 2. Polymer, 1996, 37, 3559-3565.	3.8	18
61	Properties of Waterborne Polyurethanes Based on Polycarbonate Diol Reinforced with Organophilic Clay. Journal of Macromolecular Science - Physics, 2003, 42, 1249-1263.	1.0	18
62	Thermoplastic polyurethane elastomer/thermoplastic polyolefin elastomer blends compatibilized with a polyolefinic segment in TPU. Macromolecular Research, 2010, 18, 177-184.	2.4	18
63	Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly(vinyl alcohol). Colloid and Polymer Science, 2013, 291, 2365-2374.	2.1	18
64	Miscibility of thermoplastic polyurethane elastomers with chlorine-containing polymers. Polymer International, 1992, 29, 115-120.	3.1	16
65	Polyarylate–polystyrene block copolymer from macro-azoinitiator: Synthesis and its thermal properties. Journal of Polymer Science Part A, 1993, 31, 435-441.	2.3	15
66	The properties of functionalized graphene sheet/poly(ethyl methacrylate) nanocomposites: The effects of preparation method. Macromolecular Research, 2011, 19, 379-384.	2.4	15
67	Dynamic mechanical properties of poly(vinyl chloride) and polyurethane carboxylate blends. Journal of Applied Polymer Science, 1994, 51, 2187-2190.	2.6	14
68	Preparation of poly(methyl methacrylate)/Na-MMT Nanocomposites viain-Situ polymerization with macroazoinitiator. Macromolecular Research, 2005, 13, 102-106.	2.4	14
69	The Effect of Oxidation on Properties of Graphene and Its Polycaprolactone Nanocomposites. Journal of Nanoscience and Nanotechnology, 2012, 12, 8420-8430.	0.9	14
70	Compatibilizing effect of polyarylate-polystyrene block copolymer in polyarylate/polystyrene blends. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 21-28.	2.1	13
71	Phase structure and properties of some thermoplastic polyesteramide elastomers. Polymer, 1998, 39, 459-465.	3.8	13
72	Novel graphene papers with sporadic alkyl brushes on the basal plane as a high-capacity flexible anode for lithium ion batteries. Electrochimica Acta, 2014, 135, 478-486.	5.2	13

#	Article	IF	CITATIONS
73	Thermal and mechanical properties of the polymers synthesized by the sequential polymerization of propylene and 1-hexadecene. Journal of Applied Polymer Science, 2002, 84, 1709-1715.	2.6	11
74	Characteristics of polystyrene/organoclay nanocomposites prepared by in-situ polymerization with macroazoinitiator containing poly(dimethylsiloxane) segment. Journal of Applied Polymer Science, 2006, 99, 2841-2847.	2.6	11
75	Reactive hot melt polyurethane adhesives modified by acrylic copolymer nanocomposites. Macromolecular Research, 2009, 17, 879-885.	2.4	11
76	Morphology and physical properties of SAN/NBR blends: The effect of AN content in NBR. Journal of Applied Polymer Science, 2000, 78, 1861-1868.	2.6	10
77	Thermal and mechanical properties of poly(ether urethane) modified by copolyamide segments. Macromolecular Chemistry and Physics, 1994, 195, 2559-2567.	2.2	9
78	Styrenic polymer/organoclay nanocomposite prepared viain-situ polymerization with an azoinitiator linked to an epoxy oligomer. Macromolecular Research, 2006, 14, 610-616.	2.4	9
79	Characteristics of Rubber/Sodium Montmorillonite Nanocomposites Prepared by a Novel Method. Journal of Macromolecular Science - Physics, 2007, 46, 1151-1163.	1.0	9
80	The effect of organoclay on the properties of a reactive hot melt polyurethane adhesive. Composite Interfaces, 2007, 14, 467-476.	2.3	9
81	Graphene functionalized with poly(vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly(methyl methacrylate). Journal of Colloid and Interface Science, 2016, 476, 47-54.	9.4	9
82	Thermal and mechanical properties of poly(esterurethane) modified by copolyamide segments of various molecular weight. Polymer International, 1995, 36, 239-245.	3.1	8
83	Synthesis and application of polyarylate-poly(methyl methacrylate) block copolymer as compatibilizer for polyarylate/poly(vinylidene fluoride) blend. European Polymer Journal, 1994, 30, 353-360.	5.4	7
84	Morphology and physical properties of SAN/NBR blends: The effect of AN content and melt viscosity of SAN. Journal of Applied Polymer Science, 1999, 73, 935-941.	2.6	6
85	Acrylic copolymer intercalated in sodium montmorillonite: a modifier of reactive hot melt polyurethane adhesive. Composite Interfaces, 2008, 15, 577-587.	2.3	6
86	The Properties of Reactive Hot Melt Polyurethane Adhesives: Effects of Molecular Weight and Reactive Organoclay. Polymer-Plastics Technology and Engineering, 2009, 48, 932-938.	1.9	6
87	Waterborne polyurethane modified with silicone macromer and the nylon airbag coated with it. Textile Reseach Journal, 2016, 86, 2015-2021.	2.2	6
88	Compatibilizing effect of polyarylate-nylon 6 block copolymers on polyarylate/nylon 6 blends: 1. Synthesis of polyarylate-nylon 6 block copolymer and its miscibility in binary blends with polyarylate or nylon 6. Polymer, 1993, 34, 4156-4165.	3.8	4
89	Poly(methyl methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer. Macromolecular Chemistry and Physics, 2016, 217, 570-580.	2.2	4
90	Functionalized graphene sheets/polycarbonate nanocomposites compatibilized by poly(phenylenevinylene). Macromolecular Research, 2012, 20, 768-771.	2.4	3

#	Article	IF	Citations
91	Miscibility of polyamide-6,6 with aromatic polyamides. Polymer Bulletin, 1996, 37, 361-367.	3.3	2
92	Shape memory polyurethane nanocomposites with a functionalized graphene., 2013,,.		2
93	Sound damping of a PU foam nanocomposite. , 2008, , .		1
94	Functionalized graphene sheet/polyurethane nanocomposites: Effect of particle size on the physical properties. , 2010 , , .		1
95	Molecular brushes with extreme grafted side chain densities. Polymer, 2012, 53, 3462-3468.	3.8	1
96	Tetramethylpolyarylate-polyarylate block copolymer: Synthesis and miscibility with polyarylate and poly(styrene- <i>co</i> -acrylonitrile). Journal of Macromolecular Science - Physics, 1997, 36, 429-440.	1.0	0
97	Graphite oxide/poly (methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. , 2008, , .		0