Jun-Ni Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1169122/publications.pdf Version: 2024-02-01

Ιμη-Νι Τάνς

#	Article	IF	CITATIONS
1	Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. Journal of Applied Microbiology, 2012, 112, 823-830.	3.1	100
2	Two thermostable nucleases coexisted in <i>Staphylococcus aureus</i> : evidence from mutagenesis and <i>in vitro</i> expression. FEMS Microbiology Letters, 2008, 284, 176-183.	1.8	56
3	Detection of CTX-M-15, CTX-M-22, and SHV-2 Extended-Spectrum Î ² -Lactamases (ESBLs) in <i>Escherichia coli</i> Fecal-Sample Isolates from Pig Farms in China. Foodborne Pathogens and Disease, 2009, 6, 297-304.	1.8	51
4	Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspaceâ€solid phase microâ€extraction/gas chromatographyâ€mass spectrometry. Journal of Basic Microbiology, 2017, 57, 228-237.	3.3	51
5	An effective method for isolation of DNA from pig faeces and comparison of five different methods. Journal of Microbiological Methods, 2008, 75, 432-436.	1.6	47
6	Characterization of Adhesin Genes, Staphylococcal Nuclease, Hemolysis, and Biofilm Formation Among <i>Staphylococcus aureus</i> Strains Isolated from Different Sources. Foodborne Pathogens and Disease, 2013, 10, 757-763.	1.8	47
7	Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. International Journal of Antimicrobial Agents, 2009, 33, 456-460.	2.5	39
8	The Protective Immune Response against Infectious Bronchitis Virus Induced by Multi-Epitope Based Peptide Vaccines. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1500-1504.	1.3	31
9	Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. Journal of Dairy Science, 2020, 103, 8350-8359.	3.4	30
10	Phenotypic Characterization and Prevalence of Enterotoxin Genes in <i>Staphylococcus aureus</i> Isolates from Outbreaks of Illness in Chengdu City. Foodborne Pathogens and Disease, 2011, 8, 1317-1320.	1.8	28
11	Identification and measurement of staphylococcal enterotoxin M from <i>Staphylococcus aureus</i> isolate associated with staphylococcal food poisoning. Letters in Applied Microbiology, 2017, 65, 27-34.	2.2	26
12	Comparative Expression Analysis of Two Thermostable Nuclease Genes in <i>Staphylococcus aureus</i> . Foodborne Pathogens and Disease, 2012, 9, 265-271.	1.8	23
13	The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Science China Life Sciences, 2011, 54, 863-869.	4.9	22
14	Multivalent DNA Vaccine Enhanced Protection Efficacy against Infectious Bronchitis Virus in Chickens. Journal of Veterinary Medical Science, 2009, 71, 1585-1590.	0.9	18
15	CHARACTERIZATION OF A DUPLEX POLYMERASE CHAIN REACTION ASSAY FOR THE DETECTION OF ENTEROTOXIGENIC STRAINS OF STAPHYLOCOCCUS AUREUS. Journal of Rapid Methods and Automation in Microbiology, 2006, 14, 201-217.	0.4	17
16	Antimicrobial susceptibility and presence of resistance & enterotoxins/enterotoxin-likes genes in <i>Staphylococcus aureus</i> from food. CYTA - Journal of Food, 2018, 16, 76-84.	1.9	14
17	An Untargeted Metabolomics Investigation of Milk from Dairy Cows with Clinical Mastitis by 1H-NMR. Foods, 2021, 10, 1707.	4.3	14
18	Allograft Inflammatory Factor-1 Mediates Macrophage-Induced Impairment of Insulin Signaling in Adipocytes. Cellular Physiology and Biochemistry, 2018, 47, 403-413.	1.6	13

Jun-Ni Tang

#	Article	IF	CITATIONS
19	EFFECTS OF DIFFERENT CULTIVATION CONDITIONS ON <i>STAPHYLOCOCCUS AUREUS</i> BIOFILM FORMATION AND DIVERSITY OF ADHESIN GENES. Journal of Food Safety, 2012, 32, 210-218.	2.3	12
20	Incidence and characterization of Staphylococcus aureus strains isolated from food markets. Annals of Microbiology, 2015, 65, 279-286.	2.6	12
21	Identification and measurement of staphylococcal enterotoxin-like protein I (SEI I) secretion from Staphylococcus aureus clinical isolate. Journal of Applied Microbiology, 2016, 121, 539-546.	3.1	10
22	Surveillance study of enterotoxin genes in Staphylococcus aureus isolates from goats of different slaughterhouses in Sichuan, China. Annals of Microbiology, 2012, 62, 1247-1253.	2.6	8
23	Development of a multi-pathogen enrichment broth for simultaneous growth of five common foodborne pathogens. Journal of General and Applied Microbiology, 2015, 61, 224-231.	0.7	7
24	Comparative Effects of Food Preservatives on the Production of Staphylococcal Enterotoxin I from Staphylococcus aureus Isolate. Journal of Food Quality, 2017, 2017, 1-5.	2.6	5
25	The production characteristics of volatile organic compounds and their relation to growth status of Staphylococcus aureus in milk environment. Journal of Dairy Science, 2018, 101, 4983-4991.	3.4	5
26	Tea Catechin Inhibits Biofilm Formation of Methicillin-Resistant S. aureus. Journal of Food Quality, 2021, 2021, 1-7.	2.6	5
27	Growth and Volatile Compounds of <i>Escherichia coli</i> O157:H7 on Irradiated Pork. Journal of Food Quality, 2016, 39, 766-772.	2.6	3
28	Staphylococcal enterotoxin M causes intestine dysfunction via activating inflammation. Journal of Food Safety, 2018, 38, e12465.	2.3	3
29	THE INFLUENCE OF <i>SAE</i> LOCUS KNOCKOUT ON EXOPROTEINS IN <i>STAPHYLOCOCCUS AUREUS</i> Journal of Food Safety, 2010, 30, 711-720.	2.3	1
30	Genomic analyses of Staphylococcus aureus isolated from yaks in Ganzi Tibetan Autonomous Prefecture, China. Journal of Antimicrobial Chemotherapy, 2022, , .	3.0	1
31	Staphylococcal enterotoxin U promotes proinflammatory activity of macrophage via upâ€regulation of allograft inflammatory factor 1 expression. Journal of Food Safety, 2020, 40, e12765.	2.3	0