Xin Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11690258/xin-zhou-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 26 2,877 53 g-index h-index citations papers 60 3,672 10.1 5.7 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
60	Two-dimensional material-based functional aerogels for treating hazards in the environment: synthesis, functional tailoring, applications, and sustainability analysis <i>Nanoscale Horizons</i> , 2022 ,	10.8	6
59	A coumarin-based reversible two-photon fluorescence probe for imaging glutathione near -methyl-D-aspartate (NMDA) receptors <i>Chemical Communications</i> , 2022 ,	5.8	3
58	A reversible turn-on fluorescent probe for quantitative imaging and dynamic monitoring of cellular glutathione. <i>Analytica Chimica Acta</i> , 2022 , 1214, 339957	6.6	
57	Rapid detection of HS gas driven by the catalysis of flower-like BiMoO and its visual performance: A combined experimental and theoretical study. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127734	12.8	2
56	Single-Atom Fe Triggers Superb CO2 Photoreduction on a Bismuth-Rich Catalyst 2021 , 3, 364-371		12
55	Rational Design of Meso-Phosphino-Substituted BODIPY Probes for Imaging Hypochlorite in Living Cells and Mice. <i>Analytical Chemistry</i> , 2021 , 93, 9640-9646	7.8	6
54	Crystalline carbon modified hierarchical porous iron and nitrogen co-doped carbon for efficient electrocatalytic oxygen reduction. <i>Journal of Colloid and Interface Science</i> , 2021 , 594, 864-873	9.3	4
53	Facile synthesis of pyronin-9-thione via a trisulfur radical anion mechanism. <i>New Journal of Chemistry</i> , 2021 , 45, 19-22	3.6	1
52	Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. <i>Nano Energy</i> , 2021 , 80, 105540	17.1	25
51	Effect of anisotropic conductivity of AgS-modified Zn InS (= 1, 5) on the photocatalytic properties in solar hydrogen evolution <i>RSC Advances</i> , 2021 , 11, 26908-26914	3.7	0
50	Engineering SnO nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room-temperature NO detection. <i>Nanotechnology</i> , 2021 , 32, 155505	3.4	10
49	Insight into the influence of donor-acceptor system on graphitic carbon nitride nanosheets for transport of photoinduced charge carriers and photocatalytic H generation. <i>Journal of Colloid and Interface Science</i> , 2021 , 601, 326-337	9.3	6
48	Tunable built-in electric fields enable high-performance one-dimensional co-axial MoOx/MoON heterojunction nanotube arrays for thin-film pseudocapacitive charge storage devices. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13263-13270	13	2
47	A molecular design towards sulfonyl aza-BODIPY based NIR fluorescent and colorimetric probe for selective cysteine detection <i>RSC Advances</i> , 2021 , 11, 10154-10158	3.7	5
46	Polymeric Membranes with Selective Solution-Diffusion for Intercepting Volatile Organic Compounds during Solar-Driven Water Remediation. <i>Advanced Materials</i> , 2020 , 32, e2004401	24	54
45	Active and Stable PtNi Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. <i>ACS Catalysis</i> , 2020 , 10, 4205-4214	13.1	47
44	Plasma-induced surface reorganization of porous CoO-CoO heterostructured nanosheets for electrocatalytic water oxidation. <i>Journal of Colloid and Interface Science</i> , 2020 , 565, 400-404	9.3	5

(2018-2020)

43	A mitochondria-targeted fluorescent probe for fast detecting hypochlorite in living cells. <i>Dyes and Pigments</i> , 2020 , 176, 108192	4.6	16
42	Tailoring the d-Band Centers Endows (NixFe1☑)2P Nanosheets with Efficient Oxygen Evolution Catalysis. <i>ACS Catalysis</i> , 2020 , 10, 9086-9097	13.1	140
41	Highly sensitive gas sensing material for polar gas molecule based on Janus group-III chalcogenide monolayers: A first-principles investigation. <i>Science China Technological Sciences</i> , 2020 , 63, 1566-1576	3.5	2
40	Phenyl-Bridged Graphitic Carbon Nitride with a Porous and Hollow Sphere Structure to Enhance Dissociation of Photogenerated Charge Carriers and Visible-Light-Driven H Generation. <i>ACS Applied Materials & Dissociation (Materials & Dissociation (Material</i>	9.5	33
39	Copper-Catalyzed Radical N-Demethylation of Amides Using -Fluorobenzenesulfonimide as an Oxidant. <i>Organic Letters</i> , 2020 , 22, 4583-4587	6.2	12
38	Two-Dimensional Covalent Organic Framework-Graphene Photodetectors: Insight into the Relationship between the Microscopic Interfacial Structure and Performance. <i>ACS Omega</i> , 2019 , 4, 1878	3 0 :987	8 6 0
37	Surface Confined Synthesis of Hydroxy Functionalized Two-Dimensional Polymer: The Effect of the Position of Hydroxy Groups. <i>ChemPhysChem</i> , 2019 , 20, 2322-2326	3.2	2
36	Oxygen Vacancy Engineering of Bi O Cl for Boosted Photocatalytic CO Conversion. <i>ChemSusChem</i> , 2019 , 12, 2740-2747	8.3	48
35	Fast Healable Superhydrophobic Material. ACS Applied Materials & amp; Interfaces, 2019, 11, 29388-2939	5 9.5	28
34	Mimicking Backdonation in Ce-MOFs for Solar-Driven Ammonia Synthesis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 29917-29923	9.5	41
33	Oxygen-Vacancy-Enriched Porous MoO3 Nanosheets for Trimethylamine Sensing. <i>ACS Applied Nano Materials</i> , 2019 , 2, 8016-8026	5.6	46
32	Sodium Hyaluronate: A Versatile Polysaccharide toward Intrinsically Self-Healable Energy-Storage Devices. <i>ACS Applied Materials & Devices</i> , 2019, 11, 3136-3141	9.5	10
31	Dual Tuning of Composition and Nanostructure of Hierarchical Hollow Nanopolyhedra Assembled by NiCo-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Oxygen Evolution. <i>ACS Applied Energy Materials</i> , 2019 , 2, 312-319	6.1	21
30	Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. <i>Coordination Chemistry Reviews</i> , 2018 , 366, 29-68	23.2	142
29	Electronic and Spectroscopic Properties of La2@C112 Isomers. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 241-246	2.2	
28	Colorimetric and Fluorescent Detecting Phosgene by a Second-Generation Chemosensor. <i>Analytical Chemistry</i> , 2018 , 90, 3382-3386	7.8	48
27	A superhydrophobic aerogel with robust self-healability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4424	- 44 31	51
26	Modulating the molecular third-order optical nonlinearity by curved surface of carbon skeleton. Molecular Physics, 2018, 116, 242-250	1.7	

A ratiometric fluorescent probe based on a coumarin-hemicyanine scaffold for sensitive and

selective detection of endogenous peroxynitrite. Biosensors and Bioelectronics, 2015, 64, 285-91

11.8

131

LIST OF PUBLICATIONS

7	Recent Progress on the Development of Chemosensors for Gases. <i>Chemical Reviews</i> , 2015 , 115, 7944-80	060.1	548
6	Hierarchical ⊞e2O3/NiO composites with a hollow structure for a gas sensor. <i>ACS Applied Materials & ACS Applied & ACS ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	220
5	A reversible fluorescent probe for circulatory detection of sulfites through a redox-based tandem reaction. <i>RSC Advances</i> , 2014 , 4, 54554-54557	3.7	22
4	A sensitive and selective fluorescent probe for cysteine based on a new response-assisted electrostatic attraction strategy: the role of spatial charge configuration. <i>Chemistry - A European Journal</i> , 2013 , 19, 7817-24	4.8	95
3	A cysteine probe with high selectivity and sensitivity promoted by response-assisted electrostatic attraction. <i>Chemical Communications</i> , 2012 , 48, 8793-5	5.8	88
2	Regulating Electron Redistribution of Intermetallic Iridium Oxide by Incorporating Ru for Efficient Acidic Water Oxidation. <i>Advanced Energy Materials</i> ,2102883	21.8	9
1	Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries with PEO-Based Solid-State Electrolyte. <i>Advanced Functional Materials</i> ,2113068	15.6	5