
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11690009/publications.pdf Version: 2024-02-01

ΜΡΛΜΠΠ

#	Article	IF	CITATIONS
1	Contributions of intra-build design parameters to mechanical properties in electron beam additive manufacturing of Ti6Al4V. Materials Today Communications, 2022, 30, 103190.	0.9	3
2	Mechanical anisotropy and its evolution with powder reuse in Electron Beam Melting AM of Ti6Al4V. Materials and Design, 2021, 200, 109450.	3.3	25
3	Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V. Materialia, 2021, 15, 100992.	1.3	24
4	Surface tracking of diffusion bonding void closure and its application to titanium alloys. International Journal of Material Forming, 2020, 13, 517-531.	0.9	6
5	Characterization of Surfaces Generated in Milling and Abrasive Water Jet of CFRP Using Wavelet Packet Transform. IOP Conference Series: Materials Science and Engineering, 2020, 842, 012001.	0.3	1
6	A Fractographic Analysis of Additively Manufactured Ti6Al4V by Electron Beam Melting: Effects of Powder Reuse. Journal of Failure Analysis and Prevention, 2020, 20, 794-803.	0.5	13
7	Powder Reuse in Electron Beam Melting Additive Manufacturing of Ti6Al4V: Particle Microstructure, Oxygen Content and Mechanical Properties. Additive Manufacturing, 2020, 35, 101216.	1.7	13
8	Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse. Materialia, 2020, 9, 100631.	1.3	49
9	Study of machining induced surface defects and its effect on fatigue performance of AZ91/15%SiCp metal matrix composite. Journal of Magnesium and Alloys, 2020, 8, 387-395.	5.5	20
10	Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Composites Part B: Engineering, 2019, 175, 107134.	5.9	55
11	Surface quality monitoring in abrasive water jet machining of Ti6Al4V–CFRP stacks through wavelet packet analysis of acoustic emission signals. International Journal of Advanced Manufacturing Technology, 2019, 104, 4091-4104.	1.5	29
12	Study of surface topography in Abrasive Water Jet machining of carbon foam and morphological characterization using Discrete Wavelet Transform. Journal of Materials Processing Technology, 2019, 273, 116249.	3.1	14
13	Dataset for interpreting the Circos figures used in the review of friction stir welding of titanium alloys. Data in Brief, 2019, 22, 164-168.	0.5	0
14	Study of Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Three Titanium Alloys. Materials Today: Proceedings, 2018, 5, 1082-1092.	0.9	7
15	Friction stir welding of titanium alloys: A review. Materials and Design, 2018, 141, 230-255.	3.3	170
16	Effect of Heat Treatment on Friction Stir Welded Dissimilar Titanium Alloys. Conference Proceedings of the Society for Experimental Mechanics, 2018, , 45-53.	0.3	0
17	Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining. Materials, 2016, 9, 746.	1.3	27
18	Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Titanium Alloys: TIMET-54M and ATI-425. Metals, 2016, 6, 252.	1.0	13

#	Article	IF	CITATIONS
19	Modeling of Diffusion Bonding Time in Dissimilar Titanium Alloys: Preliminary Results. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2016, 138, .	1.3	2
20	Comparative study of fatigue and fracture in friction stir and electron beam welds of 24 mm thick titanium alloy Tiâ€6Alâ€4 V. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1226-1240.	1.7	25
21	Experimental Investigation of Abrasive Waterjet Machining of Titanium Graphite Laminates. International Journal of Automation Technology, 2016, 10, 392-400.	0.5	22
22	Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Tiâ€6Alâ€4 V. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 1228-1236.	1.7	108
23	Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief. Journal of Materials Engineering and Performance, 2015, 24, 3263-3270.	1.2	29
24	Fatigue performance of Friction Stir Welded Ti–6Al–4V subjected to various post weld heat treatment temperatures. International Journal of Fatigue, 2015, 75, 19-27.	2.8	40
25	Fracture toughness and fatigue crack growth in Tiâ€6Alâ€4V friction stir welds. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 970-982.	1.7	29
26	A study of the residual stress induced by shot peening for an isotropic material based on Prager's yield criterion for combined stresses. Meccanica, 2015, 50, 1593-1604.	1.2	3
27	Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties. Jom, 2015, 67, 1054-1063.	0.9	26
28	Material flow during friction stir welding of Ti-6Al-4V. Journal of Materials Processing Technology, 2015, 218, 107-115.	3.1	46
29	Fatigue performance of Friction Stir Welded titanium structural joints. International Journal of Fatigue, 2015, 70, 171-177.	2.8	19
30	Multi-Sensor Detection and Estimation of Gaps When Drilling CFRP Composite Stacks. , 2014, , .		0
31	Experimental and Numerical Analysis of Mechanical Behavior in Friction Stir Welded Different Titanium Alloys. , 2014, , .		1
32	Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 327-337.	2.6	647
33	Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135, .	1.3	321
34	Tool Wear Monitoring Using Microphone Signals and Recurrence Quantification Analysis when Drilling Composites. Advanced Materials Research, 2013, 711, 239-244.	0.3	7
35	Usage of PCD tool in drilling of titanium/graphite hybrid composite laminate. International Journal of Machining and Machinability of Materials, 2013, 13, 276.	0.1	15
36	Hole Surface Quality and Damage When Drilling Unidirectional CFRP Composites. , 2012, , .		0

#	Article	IF	CITATIONS
37	Processing and fiber content effects on the machinability of compression moulded random direction short GFRP composites. International Journal of Automotive Technology, 2010, 11, 849-855.	0.7	9
38	Edge Finishing Effects on the Impact Behavior of Chopped GFRP Composites. Experimental Mechanics, 2010, 50, 321-331.	1.1	1
39	Thinning Behavior Simulations in Superplastic Forming of Friction Stir Processed Titanium 6Al-4V. Journal of Materials Engineering and Performance, 2010, 19, 481-487.	1.2	8
40	Effects on the Surface Texture, Superplastic Forming, and Fatigue Performance of Titanium 6AL-4V Friction Stir Welds. Journal of Materials Engineering and Performance, 2010, 19, 503-509.	1.2	34
41	Simulation of Tensile Behavior in Friction Stir Welded and Superplastically Formed-Titanium 6Al-4V alloy. Journal of Materials Engineering and Performance, 2010, 19, 510-514.	1.2	10
42	Elastic–plastic stress/strain response of friction stir-welded titanium butt joints using moiré interferometry. Optics and Lasers in Engineering, 2010, 48, 385-392.	2.0	19
43	Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti–6Al–4V butt joints. Materials & Design, 2010, 31, 3056-3061.	5.1	41
44	Waterjet and Water-Air Jet Surface Processing of a Titanium Alloy: A Parametric Evaluation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132, .	1.3	28
45	Identification of Process Parameters for Friction Stir Welding Ti–6Al–4V. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	0.8	48
46	Peak temperatures during friction stir welding of Ti–6Al–4V. Science and Technology of Welding and Joining, 2010, 15, 468-472.	1.5	56
47	Analytical formulation of subsurface stresses during orthogonal cutting of FRPs. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1164-1173.	3.8	14
48	Modified Exit-ply Delamination Model for Drilling FRPs. Journal of Composite Materials, 2009, 43, 483-500.	1.2	42
49	Effect of process conditions on superplastic forming behaviour in Ti–6Al–4V friction stir welds. Science and Technology of Welding and Joining, 2009, 14, 669-680.	1.5	56
50	Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses. Science and Technology of Welding and Joining, 2009, 14, 476-483.	1.5	68
51	Characterization of Superplastically Formed Friction Stir Weld in Titanium 6AL-4V: Preliminary Results. Journal of Materials Engineering and Performance, 2008, 17, 187-192.	1.2	47
52	Superplastic forming of friction stir welds in Titanium alloy 6Alâ€4V: preliminary results. Materialwissenschaft Und Werkstofftechnik, 2008, 39, 353-357.	0.5	34
53	Effect of waterjet formation on surface preparation and profiling of aluminum alloy. Wear, 2008, 265, 176-185.	1.5	27
54	Experimental modelling and analysis of drilling (Al _{2O_{3)p/6061 metal matrix composites using PCD tool. International Journal of Materials and Product Technology, 2008, 32, 20.}}	0.1	4

#	Article	IF	CITATIONS
55	An Experimental Characterization of the Failure Mechanisms Activated in GFRP Composites. , 2007, , 489.		0
56	Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 220-226.	0.8	43
57	Study on the Drilling of Titanium/Graphite Hybrid Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 390-396.	0.8	56
58	Waterjet Peening and Surface Preparation at 600MPa: A Preliminary Experimental Study. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 485-490.	0.8	33
59	Failure Analysis of a Fibrous Composite Half-Space Subjected to Uniform Surface Line Load. , 2007, , 77.		0
60	Simulation of Tensile Behavior in Friction Stir Welded and Superplastically Formed Titanium 6 Al-4V Alloy. , 2007, , .		1
61	Electrical Discharge Machining of Functionally Graded 15–35 Vol% SiCp/Al Composites. Materials and Manufacturing Processes, 2006, 21, 479-487.	2.7	79
62	Fatigue of shot peened 7075-T7351 SENB specimen - A 3-D analysis. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 416-424.	1.7	6
63	Damage progression analyses of transverse stitched T-joints under flexure and tensile loading. Advanced Composite Materials, 2006, 15, 243-261.	1.0	8
64	Experimental study of composite T-joints under tensile and shear loading. Advanced Composite Materials, 2006, 15, 193-210.	1.0	16
65	Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate. , 2005, , .		2
66	Edge Finishing and Delamination Effects Induced During Abrasive Waterjet Machining on the Compression Strength of a Graphite/Epoxy Composite. , 2005, , 173.		8
67	Study on the Drilling of Titanium/Graphite Hybrid Composites. , 2005, , 99.		3
68	Ultrasonic machining effects on the surface finish and strength of silicon carbide ceramics. International Journal of Manufacturing Technology and Management, 2005, 7, 107.	0.1	19
69	Influence of Consolidation Process on the Drilling Performance and Machinability of PIXA-M and PEEK Thermoplastic Composites. Journal of Thermoplastic Composite Materials, 2005, 18, 195-217.	2.6	58
70	Mathematical Modeling of Ultra-High-Pressure Waterjet Peening. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 186-191.	0.8	27
71	Effect of Shot Peening on Fatigue Crack Growth in 7075-T7351. Journal of ASTM International, 2005, 2, 12569.	0.2	9

72 Waterjet Peening At 600MPa: A First Investigation. , 2005, , .

0

#	Article	IF	CITATIONS
73	Frequency Analysis and Process Monitoring in Drilling of Composite Materials. Advanced Composites Letters, 2004, 13, 096369350401300.	1.3	7
74	Influence of Grain Size and Microstructure on Oxidation Rates in Titanium Alloy Ti-6Al-4V Under Superplastic Forming Conditions. Journal of Materials Engineering and Performance, 2004, 13, 727-734.	1.2	47
75	Influence of processing methods on the tensile and flexure properties of high temperature composites. Composites Science and Technology, 2004, 64, 1763-1772.	3.8	21
76	Drilling process optimization for graphite/bismaleimide–titanium alloy stacks. Composite Structures, 2004, 63, 101-114.	3.1	171
77	Residual Stress Induced by Waterjet Peening: A Finite Element Analysis. Journal of Pressure Vessel Technology, Transactions of the ASME, 2004, 126, 333-340.	0.4	19
78	Frequency analysis and characterization in orthogonal cutting of glass fiber reinforced composites. Composites Part A: Applied Science and Manufacturing, 2003, 34, 949-962.	3.8	31
79	Machinability of titanium alloy (Ti'6Al'4V) by abrasive waterjets. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217, 1709-1721.	1.5	34
80	Finite Element Modeling of Edge Trimming Fiber Reinforced Plastics. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 124, 32-41.	1.3	58
81	Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy. Journal of Pressure Vessel Technology, Transactions of the ASME, 2002, 124, 118-123.	0.4	37
82	Parametric analyses of stitched composite T-joints by the finite element method. Materials & Design, 2002, 23, 751-758.	5.1	21
83	Drilling of (Al2O3)p/6061 metal matrix composites. Journal of Materials Processing Technology, 2002, 124, 244-254.	3.1	124
84	Investigation of displacement fields in an abrasive waterjet drilling process: Part 1. Experimental measurements. Experimental Mechanics, 2001, 41, 375-387.	1.1	10
85	Investigation of displacement fields in an abrasive waterjet drilling process: Part 2. Numerical analysis. Experimental Mechanics, 2001, 41, 388-402.	1.1	11
86	Investigation of mechanical behavior of transverse stitched T-joints with PR520 resin in flexure and tension. Composite Structures, 2001, 52, 307-314.	3.1	59
87	A study on the drilling of composite and titanium stacks. Composite Structures, 2001, 54, 67-77.	3.1	286
88	EDM surface effects on the fatigue strength of a 15 vol% SiCp/Al metal matrix composite material. Composite Structures, 2001, 54, 79-86.	3.1	78
89	Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress. Wear, 2001, 249, 943-950.	1.5	98
90	Transverse Stitched T-Joints in Bending with PR520 Resin: Initial Results. Journal of Reinforced Plastics and Composites, 2001, 20, 65-75.	1.6	4

#	Article	lF	CITATIONS
91	Transverse Stitched T-Joints in Bending with PR520 Resin: Initial Results. Journal of Reinforced Plastics and Composites, 2001, 20, 65-75.	1.6	4
92	Abrasive Water Jet Machining Mechanisms in Continuous-Fiber Ceramic Composites. Journal of Composites Technology and Research, 2001, 23, 82.	0.4	27
93	Experimental and numerical analysis of transverse stitched T-joints in bending. Composite Structures, 2000, 50, 17-27.	3.1	68
94	Analysis of the waterjet contact/impact on target material. Optics and Lasers in Engineering, 2000, 33, 121-139.	2.0	10
95	Waterjet Machining and Peening of Metals. Journal of Pressure Vessel Technology, Transactions of the ASME, 2000, 122, 90-95.	0.4	40
96	Peening with High Pressure Waterjets. , 1999, , .		4
97	Edge Trimming of Graphite/Epoxy with Diamond Abrasive Cutters. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1999, 121, 647-655.	1.3	19
98	Drilling of Graphite/Bismaleimide Composite Material. Journal of Materials Engineering and Performance, 1999, 8, 330-338.	1.2	37
99	An Examination of the Effects from Surface Texture on the Strength of Fiber Reinforced Plastics. Journal of Composite Materials, 1999, 33, 102-123.	1.2	97
100	Influence of fibre on the cutting stress state in machining idealized glass fibre composite. Journal of Strain Analysis for Engineering Design, 1997, 32, 19-27.	1.0	9
101	State of the Art of Research and Development in Abrasive Waterjet Machining. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 1997, 119, 776-785.	1.3	136
102	Machining and surface integrity of fibre-reinforced plastic composites. Sadhana - Academy Proceedings in Engineering Sciences, 1997, 22, 449-472.	0.8	62
103	Net shape manufacturing and the performance of polymer composites under dynamic loads. Experimental Mechanics, 1997, 37, 379-385.	1.1	29
104	Material removal in abrasive waterjet machining of metals Surface integrity and texture. Wear, 1997, 210, 50-58.	1.5	105
105	Material removal in abrasive waterjet machining of metals A residual stress analysis. Wear, 1997, 211, 302-310.	1.5	36
106	Orthogonal cutting of fiber-reinforced composites: A finite element analysis. International Journal of Mechanical Sciences, 1997, 39, 597-613.	3.6	147
107	Chip formation in orthogonal trimming of graphite/epoxy composite. Composites Part A: Applied Science and Manufacturing, 1996, 27, 121-133.	3.8	98
108	Investigation of stresses in he orthogonal cutting of fiber-reinforced plastics. Experimental Mechanics, 1996, 36, 33-41.	1.1	49

#	Article	IF	CITATIONS
109	A Study of Kerf Characteristics in Abrasive Waterjet Machining of Graphite/Epoxy Composite. Journal of Engineering Materials and Technology, Transactions of the ASME, 1996, 118, 256-265.	0.8	85
110	An experimental analysis of a Nd:YAG laser cutting process for machining silicon nitride. International Journal of Production Research, 1996, 34, 1417-1428.	4.9	5
111	Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate. International Journal of Machine Tools and Manufacture, 1995, 35, 1623-1638.	6.2	278
112	Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate. International Journal of Machine Tools and Manufacture, 1995, 35, 1639-1648.	6.2	135
113	Cutting Edge Wear of Tungsten Carbide Tool in Continuous and Interrupted Cutting of a Polymer Composite. Materials and Manufacturing Processes, 1995, 10, 493-508.	2.7	7
114	Numerical and experimental study of mixed mode fatigue crack propagation. , 1994, , 1073-1123.		5
115	The influence of abrasive waterjet cutting conditions on the surface quality of graphite/epoxy laminates. International Journal of Machine Tools and Manufacture, 1994, 34, 295-313.	6.2	106
116	SIMULATION OF ROUTER ACTION ON A LATHE TO TEST THE CUTTING TOOL PERFORMANCE IN EDGE-TRIMMING OF GRAPHITE/EPOXY COMPOSITE. Experimental Techniques, 1994, 18, 23-28.	0.9	7
117	Dynamic photoelastic investigation on the mechanics of waterjet and abrasive waterjet machining. Optics and Lasers in Engineering, 1993, 19, 43-65.	2.0	12
118	A study of the surface texture of composite drilled holes. Journal of Materials Processing Technology, 1993, 37, 373-389.	3.1	26
119	Hydro-abrasive erosion characteristics of 30vol.%SiCp/6061-T6 Al composite at shallow impact angles. Wear, 1993, 166, 55-63.	1.5	43
120	Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite. Composites, 1993, 24, 299-308.	0.9	99
121	Effect of fibre direction on surface roughness measurements of machined graphite/epoxy composite. Composites Manufacturing, 1993, 4, 39-51.	0.4	94
122	Cascadating fracture in a laminated tempered safety glass panel. International Journal of Fracture, 1991, 48, 49-69.	1.1	18
123	Machining of Graphite/Epoxy Composite Materials With Polycrystalline Diamond (PCD) Tools. Journal of Engineering Materials and Technology, Transactions of the ASME, 1991, 113, 430-436.	0.8	32
124	EDM Surface Characterization of a Ceramic Composite TiB2/SiC. Journal of Engineering Materials and Technology, Transactions of the ASME, 1991, 113, 437-442.	0.8	22
125	Machinability of High Temperature Composites by Abrasive Waterjet. Journal of Engineering Materials and Technology, Transactions of the ASME, 1990, 112, 381-386.	0.8	83
126	Fatigue crack growth from an artificial flaw. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 119, 73-80.	2.6	1

#	ARTICLE	IF	CITATIONS
127	EDM machinability of SiCw/Alcomposites. Journal of Materials Science, 1989, 24, 1103-1108.	1.7	87
128	Small surface and corner crack propagation in aluminum and steel alloys. Experimental Mechanics, 1988, 28, 214-220.	1.1	4
129	EDM Sinker Cutting of a Ceramic Particulate Composite, SiC-TiB ₂ . Advanced Ceramic Materials, 1988, 3, 324-327.	2.3	51
130	Small fatigue crack growth from a keyhole notch. Scripta Metallurgica, 1987, 21, 187-190.	1.2	3
131	Dynamic crack curving and branching under biaxial loading. Experimental Mechanics, 1987, 27, 146-153.	1.1	34
132	A Notched Specimen for a Short Fatigue Crack. Experimental Techniques, 1987, 11, 32-34.	0.9	1
133	Strain energy density criteria for dynamic fracture and dynamic crack branching. Theoretical and Applied Fracture Mechanics, 1986, 5, 117-123.	2.1	7
134	Mechanics of crack curving and branching ? a dynamic fracture analysis. International Journal of Fracture, 1985, 27, 187-201.	1.1	179
135	Analysis of dynamic mixed-mode isochromatics. Experimental Mechanics, 1985, 25, 344-353.	1.1	4
136	Mechanics of crack curving and branching $\hat{a} \in \hat{~}$ a dynamic fracture analysis. , 1985, , 61-75.		38
137	CRITERIA FOR DYNAMIC CRACK CURVING AND BRANCHING. , 1984, , 3099-3107.		3
138	Dynamic Crack Branchingâ \in "A Photoelastic Evaluation. , 1984, , 130-148.		10
139	Dynamic crack curving—A photoelastic evaluation. Experimental Mechanics, 1983, 23, 1-9.	1.1	75
140	Further studies on dynamic crack branching. Experimental Mechanics, 1983, 23, 431-437.	1.1	37
141	Strain energy density fracture criterion in elastodynamic mixed mode crack propagation. Engineering Fracture Mechanics, 1983, 18, 1087-1098.	2.0	16
142	Dynamic Crack Curving and Crack Branching. , 1983, , 241-250.		4
143	Dynamic Crack Curving and Branching in Line-Pipe. Journal of Pressure Vessel Technology, Transactions of the ASME, 1982, 104, 317-322.	0.4	19
144	Dynamic stress-intensity factors for unsymmetric dynamic isochromatics. Experimental Mechanics, 1981, 21, 41-48.	1.1	26

9

#	Article	IF	CITATIONS
145	Effect of Surface Play on the Quality of the Hole when Drilling Multi-Directional CFRP Composites. Applied Mechanics and Materials, 0, 330, 117-122.	0.2	1
146	Spark-Erosion Process Effects on the Properties and Performance of a Tib2 Particulate-Reinforced/SiC Matrix Ceramic Composite. Ceramic Engineering and Science Proceedings, 0, , 227-238.	0.1	10