Giles W Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1168979/publications.pdf

Version: 2024-02-01

108 11,011 36
papers citations h-index

36 97 h-index g-index

116 116 all docs citations

116 times ranked 13392 citing authors

#	Article	IF	CITATIONS
1	Pretreatment Normal WM Magnetization Transfer Ratio Predicts Risk of Radiation Necrosis in Patients with Medulloblastoma. American Journal of Neuroradiology, 2022, 43, 299-303.	1.2	1
2	The posterior fossa syndrome questionnaire: using science to inform practice. Journal of Neuro-Oncology, 2022, , 1.	1.4	0
3	Entrectinib in children and young adults with solid or primary CNS tumors harboring <i>NTRK</i> , <i>ROS1</i> , or <i>ALK</i> aberrations (STARTRK-NG). Neuro-Oncology, 2022, 24, 1776-1789.	0.6	37
4	Circulating tumor DNA profiling for childhood brain tumors: Technical challenges and evidence for utility. Laboratory Investigation, 2022, 102, 134-142.	1.7	11
5	Revised clinical and molecular risk strata define the incidence and pattern of failure in medulloblastoma following risk-adapted radiotherapy and dose-intensive chemotherapy: results from a phase III multi-institutional study. Neuro-Oncology, 2022, 24, 1166-1175.	0.6	2
6	Low-coverage whole-genome sequencing of cerebrospinal-fluid-derived cell-free DNA in brain tumor patients. STAR Protocols, 2022, 3, 101292.	0.5	2
7	MEDB-42. Germline <i>Elp1</i> deficiency promotes genomic instability and survival of granule neuron progenitors primed for SHH medulloblastoma pathogenesis. Neuro-Oncology, 2022, 24, i115-i115.	0.6	O
8	EPCT-01. Pediatric Brain Tumor Consortium (PBTC)-055: A phase I study of trametinib and hydroxychloroquine (HCQ) for BRAF-fusion or Neurofibromatosis type-1 (NF1)-associated pediatric gliomas. Neuro-Oncology, 2022, 24, i35-i35.	0.6	0
9	MEDB-69. Clinical and molecular meta-analysis of three major medulloblastoma clinical trials (ACNS0331, SJMB03, ACNS0332) uncovers novel strategies to improve risk-stratified therapy. Neuro-Oncology, 2022, 24, i122-i122.	0.6	1
10	MEDB-29. Application of Rotterdam Post-Operative Cerebellar Mutism Syndrome Prediction Model to Patients Operated for Medulloblastoma in a Single Institution. Neuro-Oncology, 2022, 24, i111-i111.	0.6	0
11	INSP-09. Using genetically engineered mouse models and patient-derived orthotopic xenografts to develop new therapies for pediatric brain tumors Neuro-Oncology, 2022, 24, i188-i188.	0.6	O
12	MEDB-78. Unified rhombic lip origins of Group 3 and Group 4 medulloblastoma. Neuro-Oncology, 2022, 24, i124-i125.	0.6	1
13	LGG-22. SJ901: Phase I/II evaluation of single agent mirdametinib (PD-0325901), a brain-penetrant MEK1/2 inhibitor, for the treatment of children, adolescents, and young adults with low-grade glioma (LGG). Neuro-Oncology, 2022, 24, i92-i92.	0.6	2
14	ATRT-22. Outcomes for children with recurrent atypical teratoid rhabdoid tumor: A single institution study with updated molecular and germline analysis. Neuro-Oncology, 2022, 24, i8-i8.	0.6	1
15	Primary cilia control translation and the cell cycle in medulloblastoma. Genes and Development, 2022, 36, 737-751.	2.7	14
16	Phase 1 study of pomalidomide in children with recurrent, refractory, and progressive central nervous system tumors: A Pediatric Brain Tumor Consortium trial. Pediatric Blood and Cancer, 2021, 68, e28756.	0.8	9
17	Outcome and molecular analysis of young children with choroid plexus carcinoma treated with non-myeloablative therapy: results from the SJYC07 trial. Neuro-Oncology Advances, 2021, 3, vdaa168.	0.4	6
18	Small-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma. Science Translational Medicine, 2021, 13, .	5 . 8	26

#	Article	IF	Citations
19	A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: A Pediatric Brain Tumor Consortium study (PBTCâ€042). Pediatric Blood and Cancer, 2021, 68, e28879.	0.8	24
20	Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Acta Neuropathologica, 2021, 141, 771-785.	3.9	44
21	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	0.8	40
22	Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). Journal of Clinical Oncology, 2021, 39, 822-835.	0.8	106
23	Relevance of Molecular Groups in Children with Newly Diagnosed Atypical Teratoid Rhabdoid Tumor: Results from Prospective St. Jude Multi-institutional Trials. Clinical Cancer Research, 2021, 27, 2879-2889.	3.2	35
24	Clinical features, neurologic recovery, and risk factors of postoperative posterior fossa syndrome and delayed recovery: a prospective study. Neuro-Oncology, 2021, 23, 1586-1596.	0.6	35
25	Genomes for Kids: The Scope of Pathogenic Mutations in Pediatric Cancer Revealed by Comprehensive DNA and RNA Sequencing. Cancer Discovery, 2021, 11, 3008-3027.	7.7	88
26	Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma. Nature Communications, 2021, 12, 4089.	5.8	27
27	Abstract 642: Genomes for Kids: Comprehensive DNA and RNA sequencing defining the scope of actionable mutations in pediatric cancer., 2021, , .		O
28	Rare cases of medulloblastoma with hypermutation. Cancer Reports, 2021, , e1521.	0.6	1
29	Lorlatinib in a Child with <i>ALK</i> Fusion–Positive High-Grade Glioma. New England Journal of Medicine, 2021, 385, 761-763.	13.9	27
30	[11C]-Methionine PET for Identification of Pediatric High-Grade Glioma Recurrence. Journal of Nuclear Medicine, 2021, , jnumed.120.261891.	2.8	4
31	Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell, 2021, 39, 1519-1530.e4.	7.7	64
32	BIOM-36. SERIAL ASSESSMENT OF MEASURABLE RESIDUAL DISEASE IN MEDULLOBLASTOMA LIQUID BIOPSIES. Neuro-Oncology, 2021, 23, vi18-vi19.	0.6	0
33	Germline <i>GPR161</i> Mutations Predispose to Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 43-50.	0.8	50
34	Pharmacokinetic basis for dosing highâ€dose methotrexate in infants and young children with malignant brain tumours. British Journal of Clinical Pharmacology, 2020, 86, 362-371.	1.1	17
35	Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathologica, 2020, 139, 259-271.	3.9	36
36	Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nature Reviews Cancer, 2020, 20, 42-56.	12.8	147

#	Article	IF	CITATIONS
37	Phase II Study of Nonmetastatic Desmoplastic Medulloblastoma in Children Younger Than 4 Years of Age: A Report of the Children's Oncology Group (ACNS1221). Journal of Clinical Oncology, 2020, 38, 223-231.	0.8	40
38	Characterizing Posterior Fossa Syndrome: A Survey of Experts. Pediatric Neurology, 2020, 104, 19-22.	1.0	15
39	The RACE to Develop New Targeted Therapies for Children With CNS Tumors. Clinical Pharmacology and Therapeutics, 2020, 108, 434-436.	2.3	3
40	WNT-activated embryonal tumors of the pineal region: ectopic medulloblastomas or a novel pineoblastoma subgroup?. Acta Neuropathologica, 2020, 140, 595-597.	3.9	7
41	Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathologica, 2020, 140, 209-225.	3.9	45
42	Exposure–Toxicity Association of Cyclophosphamide and Its Metabolites in Infants and Young Children with Primary Brain Tumors: Implications for Dosing. Clinical Cancer Research, 2020, 26, 1563-1573.	3.2	14
43	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	13.7	94
44	Genomics Paves the Way for Better Infant Medulloblastoma Therapy. Journal of Clinical Oncology, 2020, 38, 2010-2013.	0.8	14
45	Food Is Love: Partnering With Families to Provide Nourishment at the End of Life. Journal of Clinical Oncology, 2020, 38, 1864-1867.	0.8	3
46	Phase I study of tazemetostat, an enhancer of zeste homolog-2 inhibitor, in pediatric pts with relapsed/refractory integrase interactor 1-negative tumors Journal of Clinical Oncology, 2020, 38, 10525-10525.	0.8	24
47	Updated entrectinib data in children and adolescents with recurrent or refractory solid tumors, including primary CNS tumors Journal of Clinical Oncology, 2020, 38, 107-107.	0.8	15
48	Phase I study of vemurafenib in children with recurrent or progressive BRAFV600E mutant brain tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-002). Oncotarget, 2020, 11, 1942-1952.	0.8	45
49	Phase II study of alisertib as a single agent in recurrent or progressive atypical teratoid rhabdoid tumors Journal of Clinical Oncology, 2020, 38, 10542-10542.	0.8	4
50	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	13.7	273
51	Evaluating pediatric spinal low-grade gliomas: a 30-year retrospective analysis. Journal of Neuro-Oncology, 2019, 145, 519-529.	1.4	11
52	Reply to †Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
53	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	3.9	180
54	Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro-Oncology, 2019, 21, 1319-1330.	0.6	63

#	Article	IF	CITATIONS
55	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
56	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	18.1	376
57	Computerized assessment of cognitive impairment among children undergoing radiation therapy for medulloblastoma. Journal of Neuro-Oncology, 2019, 141, 403-411.	1.4	21
58	Reoperation for Medulloblastoma Prior to Adjuvant Therapy. Neurosurgery, 2019, 84, 1050-1058.	0.6	7
59	Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors Journal of Clinical Oncology, 2019, 37, 10009-10009.	0.8	49
60	Factors influencing the intracellular exposure of gemcitabine triphosphate in children with CNS tumors Journal of Clinical Oncology, 2019, 37, e13547-e13547.	0.8	0
61	Ovulation induction and oocyte retrieval for fertility preservation in young adolescents newly diagnosed with medulloblastoma: a case series. Journal of Obstetrics and Gynaecology, 2018, 38, 878-879.	0.4	7
62	Marked functional recovery and imaging response of refractory optic pathway glioma to BRAFV600E inhibitor therapy: a report of two cases. Child's Nervous System, 2018, 34, 605-610.	0.6	12
63	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
64	Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nature Communications, 2018, 9, 3962.	5.8	142
65	Advances in the classification of pediatric brain tumors through DNA methylation profiling: From research tool to frontline diagnostic. Cancer, 2018, 124, 4168-4180.	2.0	64
66	Risk-adapted therapy for young children with medulloblastoma (SJYCO7): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	5.1	151
67	FDG–PET CT in the evaluation of primary and secondary pancreatic malignancies. Pediatric Blood and Cancer, 2018, 65, e27115.	0.8	7
68	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
69	Outcomes for young children with molecularly defined ependymoma treated on the multi-institutional SJYC07 clinical trial Journal of Clinical Oncology, 2018, 36, 10548-10548.	0.8	1
70	A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors. Clinical Cancer Research, 2017, 23, 2433-2441.	3.2	134
71	mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Developmental Cell, 2017, 43, 673-688.e5.	3.1	48
72	Non-Malignant Cerebrospinal Fluid Ascites in a Patient with Atypical Teratoid Rhabdoid Tumor. Oncology Research and Treatment, 2017, 40, 216-219.	0.8	2

#	Article	IF	CITATIONS
73	Development of Molecularly Targeted Therapies to Treat Pediatric Malignancies. Clinical Pharmacology and Therapeutics, 2017, 102, 752-753.	2.3	5
74	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
75	ACNS1221: A phase II study for the treatment of non metastatic desmoplastic medulloblastoma in children less than 4 years of ageâ€"A report from the Children Oncology Group Journal of Clinical Oncology, 2017, 35, 10505-10505.	0.8	7
76	Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget, 2017, 8, 69295-69302.	0.8	99
77	Exploiting Laboratory Insights to Improve Outcomes of Pediatric Central Nervous System Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e540-e546.	1.8	2
78	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	3.9	478
79	Population Pharmacokinetics of Oral Topotecan in Infants and Very Young Children with Brain Tumors Demonstrates a Role of ABCG2 rs4148157 on the Absorption Rate Constant. Drug Metabolism and Disposition, 2016, 44, 1116-1122.	1.7	15
80	Preclinical studies of 5-fluoro-2′-deoxycytidine and tetrahydrouridine in pediatric brain tumors. Journal of Neuro-Oncology, 2016, 126, 225-234.	1.4	11
81	Exploiting Laboratory Insights to Improve Outcomes of Pediatric Central Nervous System Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, e540-e546.	1.8	1
82	Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition. ELife, 2016, 5 , .	2.8	60
83	Dunn Index Bootstrap (DIBS): A procedure to empirically select a cluster analysis method that identifies biologically and clinically relevant molecular disease subgroups. BMC Bioinformatics, 2015, 16, P12.	1.2	1
84	Gorlin syndrome and desmoplastic medulloblastoma: Report of 3 cases with unfavorable clinical course and novel mutations. Pediatric Blood and Cancer, 2015, 62, 1855-1858.	0.8	6
85	Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nature Genetics, 2015, 47, 263-266.	9.4	109
86	Atypical teratoid/rhabdoid tumor (ATRT) arising from the 3rd cranial nerve in infants: a clinical-radiological entity?. Journal of Neuro-Oncology, 2015, 124, 175-183.	1.4	12
87	Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog–Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. Journal of Clinical Oncology, 2015, 33, 2646-2654.	0.8	368
88	Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation. International Journal of Radiation Oncology Biology Physics, 2015, 93, 47-53.	0.4	14
89	Delayed methotrexate excretion in infants and young children with primary central nervous system tumors and postoperative fluid collections. Cancer Chemotherapy and Pharmacology, 2015, 75, 27-35.	1.1	25
90	Developmental pharmacokinetics of topotecan (TPT), a renally excreted drug, in infants and young children with brain tumors Journal of Clinical Oncology, 2015, 33, 10055-10055.	0.8	0

#	Article	IF	CITATIONS
91	Pemetrexed and Gemcitabine as Combination Therapy for the Treatment of Group3 Medulloblastoma. Cancer Cell, 2014, 25, 516-529.	7.7	128
92	Concordance between the chang and the International Society of Pediatric Oncology (<scp>SIOP</scp>) ototoxicity grading scales in patients treated with cisplatin for medulloblastoma. Pediatric Blood and Cancer, 2014, 61, 601-605.	0.8	36
93	Medulloblastomaâ€"translating discoveries from the bench to the bedside. Nature Reviews Clinical Oncology, 2014, 11, 714-722.	12.5	145
94	Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer, 2014, 14, 258.	1.1	162
95	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	13.7	520
96	The Role of Inherited TPMT and COMT Genetic Variation in Cisplatin-Induced Ototoxicity in Children With Cancer. Clinical Pharmacology and Therapeutics, 2013, 94, 252-259.	2.3	80
97	Impact of tumor location on medulloblastoma subtyping and treatment (Commentary on teo et al.,) Tj ETQq1 1	0.784314 0.8	rgBT /Overlo
98	Role of MYC in Medulloblastoma. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014308-a014308.	2.9	123
99	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	12.8	560
100	Novel mutations target distinct subgroups of medulloblastoma. Nature, 2012, 488, 43-48.	13.7	742
101	A Mouse Model of the Most Aggressive Subgroup of Human Medulloblastoma. Cancer Cell, 2012, 21, 168-180.	7.7	250
102	Developmental origins of neural tumours: old idea, new approaches. Neuropathology and Applied Neurobiology, 2012, 38, 222-227.	1.8	3
103	Abstract 1434: A mouse model of the most aggressive subgroup of human medulloblastoma. , 2012, , .		0
104	Use of whole genome sequencing to identify novel mutations in distinct subgroups of medulloblastoma Journal of Clinical Oncology, 2012, 30, 9518-9518.	0.8	0
105	Medulloblastoma: advances and challenges. F1000 Biology Reports, 2011, 3, 5.	4.0	9
106	Abstract 3448: Subtypes of medulloblastoma have distinct developmental origins. , 2011, , .		1
107	Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468, 1095-1099.	13.7	710
108	Phase II study of alisertib as a single agent for treating recurrent or progressive atypical teratoid/rhabdoid tumor. Neuro-Oncology, 0, , .	0.6	7