Dongliang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11689293/publications.pdf Version: 2024-02-01

Πονειμνις Υμ

#	Article	IF	CITATIONS
1	Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. ACS Applied Materials & Interfaces, 2020, 12, 26184-26192.	8.0	49
2	Waferâ€Scale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management. Advanced Materials Interfaces, 2017, 4, 1601116.	3.7	27
3	Optoelectronic Devices: Waferâ€Scale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management (Adv. Mater. Interfaces 5/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	4
4	Improved growth rate of anodized TiO2 nanotube arrays under reduced pressure field and light illumination. Science Bulletin, 2017, 62, 332-338.	9.0	5
5	A Mathematical Model for the Growth of Anodic TiO ₂ Nanotubes under Higher Current Density. Journal of the Electrochemical Society, 2017, 164, E401-E407.	2.9	32
6	Formation mechanism of anodic titanium oxide in mixed electrolytes. Materials Research Bulletin, 2017, 95, 539-545.	5.2	12
7	Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 10929-10936.	8.0	57
8	Highâ€Performance and Omnidirectional Thinâ€Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design. Advanced Materials, 2015, 27, 6747-6752.	21.0	29
9	Effective approach to strengthening TiO2 nanotube arrays by using double or triple reinforcements. Applied Surface Science, 2015, 346, 172-176.	6.1	17
10	Silicon Solar Cells: Highâ€Performance and Omnidirectional Thinâ€Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6768-6768.	21.0	5
11	Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter. Electrochimica Acta, 2015, 160, 33-42.	5.2	31
12	Effect of water content on ionic current, electronic current, and nanotube morphology in Ti anodizing process. Journal of Solid State Electrochemistry, 2015, 19, 1403-1409.	2.5	13
13	Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions. Nanotechnology, 2015, 26, 145603.	2.6	83
14	Templated deposition of multiscale periodic metallic nanodot arrays with sub-10 nm gaps on rigid and flexible substrates. Nanotechnology, 2014, 25, 465303.	2.6	5
15	Light Management with Nanostructures for Optoelectronic Devices. Journal of Physical Chemistry Letters, 2014, 5, 1479-1495.	4.6	147
16	Fabrication of large diameter TiO 2 nanotubes for improved photoelectrochemical performance. Materials Research Bulletin, 2014, 60, 348-352.	5.2	15
17	Efficient suppression of nanograss during porous anodic TiO 2 nanotubes growth. Applied Surface Science, 2014, 314, 505-509.	6.1	24
18	Influence of anodizing voltage mode on the nanostructure of TiO2 nanotubes. Journal of Solid State Electrochemistry, 2014, 18, 141-148.	2.5	19

Dongliang Yu

#	Article	IF	CITATIONS
19	Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotube arrays. Journal of Solid State Electrochemistry, 2014, 18, 2609-2617.	2.5	13
20	A novel nanostructure with hexagonal-prism pores fabricated under vacuum circumstance. Materials Research Bulletin, 2014, 50, 209-212.	5.2	20
21	Facile Method to Enhance the Adhesion of TiO ₂ Nanotube Arrays to Ti Substrate. ACS Applied Materials & Interfaces, 2014, 6, 8001-8005.	8.0	138
22	Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Materials Research Bulletin, 2014, 57, 116-120.	5.2	41
23	Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure. Applied Surface Science, 2013, 276, 711-716.	6.1	23
24	Fabrication of bundle-free TiO2 nanotube arrays with wide open top via a modified two-step anodization process. Materials Letters, 2013, 109, 211-213.	2.6	16
25	A novel nanostructure fabricated by an improved two-step anodizing technology. Electrochemistry Communications, 2013, 29, 71-74.	4.7	100