Anandhakumar Sukeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1168885/publications.pdf

Version: 2024-02-01

26 754 18 25
papers citations h-index g-index

26 26 26 1143
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction. Physical Chemistry Chemical Physics, 2015, 17, 28510-28514.	1.3	73
2	Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Advances, 2015, 5, 68587-68594.	1.7	66
3	Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors and Actuators B: Chemical, 2018, 263, 237-247.	4.0	55
4	Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Mikrochimica Acta, 2018, 185, 367.	2.5	54
5	Electrocatalytic oxidation of NADH at low overpotential using nanoporous poly(3,4)-ethylenedioxythiophene modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2015, 746, 75-81.	1.9	42
6	Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochemistry Communications, 2014, 38, 15-18.	2.3	40
7	Anodic stripping voltammetric detection of mercury(ii) using Au-PEDOT modified carbon paste electrode. Analytical Methods, 2012, 4, 2486.	1.3	39
8	Detection of lead(II) using an glassy carbon electrode modified with Nafion, carbon nanotubes and benzo-18-crown-6. Mikrochimica Acta, 2013, 180, 1065-1071.	2.5	38
9	Electrodeposited honeycomb-like dendritic porous gold surface: An efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. Journal of Electroanalytical Chemistry, 2017, 805, 18-23.	1.9	36
10	Development of non-enzymatic and highly selective hydrogen peroxide sensor based on nanoporous gold prepared by a simple unusual electrochemical approach. Microchemical Journal, 2017, 133, 149-154.	2.3	34
11	Unusual seedless approach to gold nanoparticle synthesis: application to selective rapid naked eye detection of mercury(<scp>ii</scp>). Analyst, The, 2014, 139, 3356-3359.	1.7	27
12	Simultaneous Determination of Cadmium and Lead Using PEDOT/PSS Modified Glassy Carbon Electrode. American Journal of Analytical Chemistry, 2011, 02, 470-474.	0.3	27
13	Nanoporous Gold Microelectrode: A Novel Sensing Platform for Highly Sensitive and Selective Determination of Arsenic (III) using Anodic Stripping Voltammetry. Electroanalysis, 2017, 29, 2316-2322.	1.5	26
14	Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 15001-15008.	3.8	26
15	New strategy to fabricate a polydopamine functionalized self-supported nanoporous gold film electrode for electrochemical sensing applications. Electrochemistry Communications, 2020, 110, 106622.	2.3	24
16	Anodic oxidation of chlorophenols in micelles and microemulsions on glassy carbon electrode: the medium effect on electroanalysis and electrochemical detoxification. Journal of Applied Electrochemistry, 2010, 40, 303-310.	1.5	20
17	Anodic stripping voltammetric determination of cadmium using a "mercury free―indium film electrode. Analyst, The, 2013, 138, 5674.	1.7	20
18	CoTRP/Graphene oxide composite as efficient electrode material for dissolved oxygen sensors. Electrochimica Acta, 2016, 222, 1682-1690.	2.6	19

#	Article	IF	CITATIONS
19	Electrocarboxylation and related radical coupling processes of aryl and benzyl halides in microemulsion. Journal of Applied Electrochemistry, 2009, 39, 463-465.	1.5	18
20	Fabrication of dendritic nanoporous gold via a two-step amperometric approach: Application for electrochemical detection of methyl parathion in river water samples. Talanta, 2021, 226, 122130.	2.9	16
21	Development of a tetraphenylporphyrin cobalt (II) modified glassy carbon electrode to monitor oxygen consumption in biological samples. Journal of Electroanalytical Chemistry, 2016, 775, 72-76.	1.9	11
22	Nanoporous Gold Surface: An Efficient Platform for Hydrogen Evolution Reaction at Very Low Overpotential. Journal of the Brazilian Chemical Society, 0, , .	0.6	11
23	Electrochemical Studies of Hydrogen Peroxide Oxidation on a Nanoporous Gold Surface: Fundamental and Analytical Applications. Journal of the Electrochemical Society, 2020, 167, 116507.	1.3	11
24	An Amberlite IRA-400 Cl ^{â^'} ion-exchange resin modified with <i>Prosopis juliflora</i> seeds as an efficient Pb ²⁺ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Advances, 2021, 11, 4478-4488.	1.7	8
25	Potentiometric glucose biosensing using camphor sulfonic acid doped polyaniline. Analytical Methods, 2012, 4, 1838.	1.3	7
26	A novel approach for one-step fabrication of platinum-nanoporous gold film via oxygen bubble template with enhanced electrochemical activity. Electrochemistry Communications, 2019, 100, 96-99.	2.3	6