List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11687814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leptin and renal disease. American Journal of Kidney Diseases, 2002, 39, 1-11.	1.9	6,157
2	From the Periphery of the Glomerular Capillary Wall Toward the Center of Disease. Diabetes, 2005, 54, 1626-1634.	0.6	521
3	Molecular mechanisms of diabetic renal hypertrophy. Kidney International, 1999, 56, 393-405.	5.2	417
4	Mediators of Diabetic Renal Disease. Journal of the American Society of Nephrology: JASN, 2004, 15, S55-S57.	6.1	400
5	Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney International, 2002, 61, 1714-1728.	5.2	398
6	Pathogenesis of the Podocytopathy and Proteinuria in Diabetic Glomerulopathy. Current Diabetes Reviews, 2008, 4, 39-45.	1.3	331
7	Leptin stimulates proliferation and TGF-β expression in renal glomerular endothelial cells: Potential role in glomerulosclerosis. Kidney International, 1999, 56, 860-872.	5.2	326
8	High glucose-induced proliferation in mesangial cells is reversed by autocrine TGF-β. Kidney International, 1992, 42, 647-656.	5.2	306
9	The Extracellular Matrix in Diabetic Nephropathy. American Journal of Kidney Diseases, 1993, 22, 736-744.	1.9	247
10	Elevated glucose stimulates TGF-β gene expression and bioactivity in proximal tubule. Kidney International, 1992, 41, 107-114.	5.2	244
11	Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Seminars in Nephrology, 2003, 23, 532-543.	1.6	233
12	The role of angiotensin II in diabetic nephropathy: Emphasis on nonhemodynamic mechanisms. American Journal of Kidney Diseases, 1997, 29, 153-163.	1.9	220
13	Cellular and Molecular Mechanisms of Proteinuria in Diabetic Nephropathy. Nephron Physiology, 2007, 106, p26-p31.	1.2	203
14	Hydrogen peroxide increases extracellular matrix mRNA through TGF-β in human mesangial cells. Kidney International, 2001, 59, 87-95.	5.2	196
15	Increased Glomerular and Tubular Expression of Transforming Growth Factor-β1, Its Type II Receptor, and Activation of the Smad Signaling Pathway in the db/db Mouse. American Journal of Pathology, 2001, 158, 1653-1663.	3.8	187
16	Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney International, 2002, 62, 901-913.	5.2	182
17	Blockade of Vascular Endothelial Growth Factor Signaling Ameliorates Diabetic Albuminuria in Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 3093-3104.	6.1	179
18	Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-Î2-induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications, 2002, 296, 1356-1365.	2.1	161

#	Article	IF	CITATIONS
19	Captopril-induced reduction of serum levels of transforming growth Factor-β1 correlates with long-term renoprotection in insulin-dependent diabetic patients. American Journal of Kidney Diseases, 1999, 34, 818-823.	1.9	156
20	The renal tubulointerstitium in diabetes mellitus. Kidney International, 1991, 39, 464-475.	5.2	154
21	Transcriptional activation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration. Kidney International, 1998, 54, 1107-1116.	5.2	153
22	Leptin and Renal Fibrosis. , 2006, 151, 175-183.		151
23	High Glucose Stimulates Proliferation and Collagen Type I Synthesis in Renal Cortical Fibroblasts. Journal of the American Society of Nephrology: JASN, 1999, 10, 1891-1899.	6.1	129
24	Leptin stimulates type I collagen production in db/db mesangial cells: Glucose uptake and TGF-β type II receptor expression. Kidney International, 2001, 59, 1315-1323.	5.2	126
25	Reversibility of established diabetic glomerulopathy by anti-TGF-β antibodies in db/db mice. Biochemical and Biophysical Research Communications, 2003, 300, 16-22.	2.1	120
26	Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: Involvement of the transforming growth factor-β system. Kidney International, 1998, 53, 631-638.	5.2	117
27	Extracellular Signal-Regulated Kinase Mediates Stimulation of TGF-β1 and Matrix by High Glucose in Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2000, 11, 2222-2230.	6.1	115
28	Interference with TGF-β signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. American Journal of Physiology - Renal Physiology, 2007, 293, F1657-F1665.	2.7	110
29	Assessment of 115 Candidate Genes for Diabetic Nephropathy by Transmission/Disequilibrium Test. Diabetes, 2005, 54, 3305-3318.	0.6	102
30	Amadori glucose adducts modulate mesangial cell growth and collagen gene expression. Kidney International, 1994, 45, 475-484.	5.2	101
31	Podocyte-Derived Vascular Endothelial Growth Factor Mediates the Stimulation of α3(IV) Collagen Production by Transforming Growth Factor-β1 in Mouse Podocytes. Diabetes, 2004, 53, 2939-2949.	0.6	101
32	Glycated albumin stimulates TGF-βbgr;1 production and protein kinase C activity in glomerular endothelial cells. Kidney International, 2001, 59, 673-681.	5.2	99
33	Angiotensin II stimulates α3(IV) collagen production in mouse podocytes via TGF-β and VEGF signalling: implications for diabetic glomerulopathy. Nephrology Dialysis Transplantation, 2005, 20, 1320-1328.	0.7	98
34	F2-isoprostanes mediate high glucose-induced TGF-Î ² synthesis and glomerular proteinuria in experimental type I diabetes. Kidney International, 2000, 58, 1963-1972.	5.2	96
35	Renal tubular basement membrane and collagen type IV in diabetes mellitus. Kidney International, 1993, 43, 114-120.	5.2	89
36	Glomerular expression of p27Kip1 in diabetic db/db mouse: Role of hyperglycemia. Kidney International, 1998, 53, 869-879.	5.2	88

#	Article	lF	CITATIONS
37	Angiotensin II stimulates expression of transforming growth factor Î ² receptor type II in cultured mouse proximal tubular cells. Journal of Molecular Medicine, 1999, 77, 556-564.	3.9	88
38	Therapy with antisense TGF-β1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. American Journal of Physiology - Renal Physiology, 2000, 278, F628-F634.	2.7	88
39	THE KEY ROLE OF THE TRANSFORMING GROWTH FACTOR-Î ² SYSTEM IN THE PATHOGENESIS OF DIABETIC NEPHROPATHY. Renal Failure, 2001, 23, 471-481.	2.1	88
40	Overview. Journal of the American Society of Nephrology: JASN, 2003, 14, 1355-1357.	6.1	88
41	Amadori-glycated albumin in diabetic nephropathy: Pathophysiologic connections. Kidney International, 2000, 58, S40-S44.	5.2	72
42	The influence of glucose concentration on angiotensin II-induced hypertrophy of proximal tubular cells in culture. Biochemical and Biophysical Research Communications, 1991, 176, 902-909.	2.1	70
43	Angiotensin II Is Mitogenic for Cultured Rat Glomerular Endothelial Cells. Hypertension, 1996, 27, 897-905.	2.7	70
44	Amadori-modified glycated serum proteins and accelerated atherosclerosis in diabetes: Pathogenic and therapeutic implications. Translational Research, 2006, 147, 211-219.	2.3	68
45	Effects of glycated albumin on mesangial cells: evidence for a role in diabetic nephropathy. Molecular and Cellular Biochemistry, 1993, 125, 19-25.	3.1	66
46	Albumin up-regulates the type II transforming growth factor-beta receptor in cultured proximal tubular cells. Kidney International, 2004, 66, 1849-1858.	5.2	65
47	Different roles for TGF-Î ² and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Research and Clinical Practice, 2008, 82, S38-S41.	2.8	65
48	Angiotensin II-stimulated expression of transforming growth factor beta in renal proximal tubular cells: Attenuation after stable transfection with the c-mas oncogene. Kidney International, 1995, 48, 1818-1827.	5.2	63
49	Potential Role of TGF-β in Diabetic Nephropathy. Mineral and Electrolyte Metabolism, 1998, 24, 190-196.	1.1	59
50	Stimulation of TGF-β type II receptor by high glucose in mouse mesangial cells and in diabetic kidney. American Journal of Physiology - Renal Physiology, 2000, 278, F830-F838.	2.7	57
51	Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney International, 2005, 68, 1554-1561.	5.2	56
52	Vascular endothelial growth factor and diabetic nephropathy. Current Diabetes Reports, 2008, 8, 470-476.	4.2	52
53	Overview of the Physiology and Pathophysiology of Leptin With Special Emphasis on its Role in the Kidney. Seminars in Nephrology, 2013, 33, 54-65.	1.6	51
54	Polyol pathway mediates high glucose-induced collagen synthesis in proximal tubule. Kidney International, 1994, 45, 659-666.	5.2	47

#	Article	IF	CITATIONS
55	GLUT1 and TGF-β: the link between hyperglycaemia and diabetic nephropathy. Nephrology Dialysis Transplantation, 1999, 14, 2827-2829.	0.7	46
56	Estradiol reverses TGF-β1-stimulated type IV collagen gene transcription in murine mesangial cells. American Journal of Physiology - Renal Physiology, 1998, 274, F1113-F1118.	2.7	41
57	The Renal TGF-β System in the db/db Mouse Model of Diabetic Nephropathy. Nephron Experimental Nephrology, 1998, 6, 226-233.	2.2	40
58	Albumin modified by Amadori glucose adducts activates mesangial cell type IV collagen gene transcription. Molecular and Cellular Biochemistry, 1995, 151, 61-67.	3.1	37
59	The cardiorenal syndrome in diabetes mellitus. Diabetes Research and Clinical Practice, 2010, 89, 201-208.	2.8	37
60	Angiotensin II Induces α 3(IV) Collagen Expression in Cultured Murine Proximal Tubular Cells. Proceedings of the Association of American Physicians, 1999, 111, 357-364.	2.0	35
61	Role of protein kinase C and cyclic AMP/protein kinase A in high glucose-stimulated transcriptional activation of collagen α1 (IV) in glomerular mesangial cells. Journal of Diabetes and Its Complications, 1995, 9, 255-261.	2.3	34
62	Glomerular Hyperfiltration and Proteinuria in Transfusion-Independent Patients with β-Thalassemia Intermedia. Nephron, 2013, 121, c136-c143.	1.8	31
63	Glycated albumin stimulation of PKC-β activity is linked to increased collagen IV in mesangial cells. American Journal of Physiology - Renal Physiology, 1999, 276, F684-F690.	2.7	29
64	Cultured tubule cells from TGF-β1 null mice exhibit impaired hypertrophy and fibronectin expression in high glucose. Kidney International, 2004, 65, 1191-1204.	5.2	29
65	Antioxidant treatment induces transcription and expression of transforming growth factor Î ² in cultured renal proximal tubular cells. FEBS Letters, 2001, 488, 154-159.	2.8	28
66	Hepatocyte growth factor: A regulator of extracellular matrix genes in mouse mesangial cells. Biochemical Pharmacology, 2000, 59, 847-853.	4.4	27
67	Inhibiting albumin glycation in vivo ameliorates glomerular overexpression of TGF-β1. Kidney International, 2002, 61, 2025-2032.	5.2	26
68	Update on pathogenesis, markers and management of diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 1996, 5, 243-253.	2.0	24
69	Increased decorin mRNA in diabetic mouse kidney and in mesangial and tubular cells cultured in high glucose. American Journal of Physiology - Renal Physiology, 1998, 275, F827-F832.	2.7	24
70	Role of insulin and IGF1 receptors in proliferation of cultured renal proximal tubule cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1133, 329-335.	4.1	22
71	Glycated albumin modified by amadori adducts modulates aortic endothelial cell biology. Molecular and Cellular Biochemistry, 1995, 143, 73-79.	3.1	20
72	Effects of weight reduction regimens and bariatric surgery on chronic kidney disease in obese patients. American Journal of Physiology - Renal Physiology, 2013, 305, F613-F617.	2.7	19

5

#	Article	IF	CITATIONS
73	Angiogenic Factors. Contributions To Nephrology, 2011, 170, 83-92.	1.1	16
74	Global Renal Gene Expression Profiling Analysis in B2-Kinin Receptor Null Mice: Impact of Diabetes. PLoS ONE, 2012, 7, e44714.	2.5	16
75	Emerging Therapies for Diabetic Nephropathy Patients: Beyond Blockade of the Renin-Angiotensin System. Nephron Extra, 2012, 2, 278-282.	1.1	14
76	Proteome profiling in the aorta and kidney of type 1 diabetic rats. PLoS ONE, 2017, 12, e0187752.	2.5	14
77	Heteromerization fingerprints between bradykinin B2 and thromboxane TP receptors in native cells. PLoS ONE, 2019, 14, e0216908.	2.5	13
78	RAGE mRNA expression in the diabetic mouse kidney. Molecular and Cellular Biochemistry, 1997, 170, 147-152.	3.1	11
79	Activation of Glomerular Mesangial Cells by Hepatocyte Growth Factor Through Tyrosine Kinase and Protein Kinase C. Biochemical Pharmacology, 1998, 55, 227-234.	4.4	11
80	Facilitative glucose transport proteins and sodium-glucose co-transporters in the kidney. Current Opinion in Nephrology and Hypertension, 1995, 4, 406-412.	2.0	8
81	End stage renal disease in six patients with beta-thalassemia intermedia. Blood Cells, Molecules, and Diseases, 2013, 51, 146-148.	1.4	8
82	Modulation of proteomic and inflammatory signals by Bradykinin in podocytes. Journal of Advanced Research, 2020, 24, 409-422.	9.5	8
83	Pathophysiology of Diabetic Nephropathy. , 2020, , 279-296.		7
84	The Use of Neutralizing Antibodies to Demonstrate the Role of Transforming Growth Factor-� and Amadori-Glycated Albumin as Mediators of Experimental Diabetic Kidney Disease. Contributions To Nephrology, 1996, 118, 188-194.	1.1	6
85	Regulation of Inducible Class II MHC, Costimulatory Molecules, and Cytokine Expression in TGF-β1 Knockout Renal Epithelial Cells: Effect of Exogenous TGF-β1. Nephron Experimental Nephrology, 2002, 10, 320-331.	2.2	6
86	Vascular Cells Proteome Associated with Bradykinin and Leptin Inflammation and Oxidative Stress Signals. Antioxidants, 2020, 9, 1251.	5.1	5
87	Pathophysiology and Pathogenesis of Diabetic Nephropathy. , 2013, , 2605-2632.		4
88	Favorable Treatment Outcome with Neutralizing anti Transforming Growth Factor I:} Antibodies in Experimental Diabetic Kidney Disease. Peritoneal Dialysis International, 1999, 19, 234-237.	2.3	3
89	Why should an angiogenic factor modulate tubular structure in diabetic nephropathy? Some answers, more questions. Kidney International, 2003, 64, 758-759.	5.2	3
90	Transforming growth factor- \hat{l}^2 and diabetic nephropathy. Journal of Organ Dysfunction, 2009, 5, 130-139.	0.3	3

#	Article	IF	CITATIONS
91	Transforming Growth Factor- \hat{l}^2 and other Cytokines in Experimental and Human Nephropathy. , 2000, , 313-338.		3
92	Pathophysiology and Pathogenesis of Diabetic Nephropathy. , 2008, , 2215-2233.		2
93	Modulation of Neuro-Inflammatory Signals in Microglia by Plasma Prekallikrein and Neuronal Cell Debris. Frontiers in Pharmacology, 2021, 12, 743059.	3.5	2
94	Transforming Growth Factor- \hat{l}^2 Signal Transduction in the Pathogenesis of Diabetic Nephropathy. , 2006, , 201-221.		1
95	Pathophysiology of Diabetic Nephropathy. , 2015, , 151-162.		1
96	TRANSFORMING GROWTH FACTOR- $\hat{1}^2$ AND OTHER CYTOKINES IN EXPERIMENTAL AND HUMAN DIABETIC NEPHROPATHY. , 0, , 397-432.		1
97	Abstract 133: Mechanistic Insights Into Bradykinin and Thromboxane Receptors Heterodimerization in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	1
98	Diabetes and hypertension. Australian Diabetes Society position statement. Medical Journal of Australia, 1996, 164, 571-572.	1.7	0
99	Management of Diabetic Nephropathy. , 2009, , 224-231.		0
100	Transforming Growth Factor-Beta and other Cytokines in Experimental and Human Diabetic Nephropathy. , 1998, , 321-333.		0