Hao Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11687557/publications.pdf Version: 2024-02-01

ΗλΟ ΟΙΛΝ

#	Article	IF	CITATIONS
1	Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature, 2020, 582, 550-556.	27.8	316
2	R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters. Molecular Cell, 2017, 68, 745-757.e5.	9.7	263
3	The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Molecular Cell, 2018, 69, 412-425.e6.	9.7	203
4	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	7.1	136
5	Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nature Neuroscience, 2016, 19, 807-815.	14.8	88
6	PTB/nPTB: master regulators of neuronal fate in mammals. Biophysics Reports, 2018, 4, 204-214.	0.8	55
7	Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Molecular Brain, 2011, 4, 19.	2.6	43
8	Quantal Glutamate Release Is Essential for Reliable Neuronal Encodings in Cerebral Networks. PLoS ONE, 2011, 6, e25219.	2.5	38
9	Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons. PLoS ONE, 2010, 5, e11868.	2.5	34
10	Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Molecular Brain, 2012, 5, 26.	2.6	33
11	Input-dependent subcellular localization of spike initiation between soma and axon at cortical pyramidal neurons. Molecular Brain, 2014, 7, 26.	2.6	27
12	Rapamycin suppresses the recurrent excitatory circuits of dentate gyrus in a mouse model of temporal lobe epilepsy. Biochemical and Biophysical Research Communications, 2012, 420, 199-204.	2.1	26
13	A Portion of Inhibitory Neurons in Human Temporal Lobe Epilepsy are Functionally Upregulated: An Endogenous Mechanism for Seizure Termination. CNS Neuroscience and Therapeutics, 2015, 21, 204-214.	3.9	24
14	Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget, 2017, 8, 72424-72437.	1.8	17
15	Brain Repair by Cell Replacement via In Situ Neuronal Reprogramming. Annual Review of Genetics, 2021, 55, 45-69.	7.6	8