Edwin W Rubel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11686917/publications.pdf

Version: 2024-02-01

196 papers 14,361 citations

74 h-index

9264

109 g-index

201 all docs

 $\begin{array}{c} 201 \\ \\ \text{docs citations} \end{array}$

times ranked

201

5418 citing authors

#	Article	IF	Citations
1	Auditory System Development: Primary Auditory Neurons and Their Targets. Annual Review of Neuroscience, 2002, 25, 51-101.	10.7	538
2	Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio) Tj ETQq	0 0 0 rgBT	/Oyerlock 10
3	Organization and development of brain stem auditory nuclei of the chicken: Tonotopic organization of N. magnocellularis and N. laminaris. Journal of Comparative Neurology, 1975, 164, 411-433.	1.6	260
4	Afferent influences on brain stem auditory nuclei of the chicken: Neuron number and size following cochlea removal. Journal of Comparative Neurology, 1985, 231, 435-445.	1.6	227
5	Notch Signaling Regulates the Extent of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2008, 28, 2261-2273.	3.6	227
6	Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. Journal of Comparative Neurology, 1989, 283, 465-473.	1.6	217
7	Mammalian Vestibular Hair Cell Regeneration. Science, 1995, 267, 701-707.	12.6	205
8	Mechanisms of hair cell death and protection. Current Opinion in Otolaryngology and Head and Neck Surgery, 2005, 13, 343-348.	1.8	203
9	CC2D2A Is Mutated in Joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290. American Journal of Human Genetics, 2008, 83, 559-571.	6.2	202
10	Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLoS Genetics, 2008, 4, e1000020.	3.5	193
11	Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. Journal of Comparative Neurology, 1979, 186, 213-239.	1.6	183
12	Organization and development of brain stem auditory nuclei of the chicken: Organization of projections from N. magnocellularis to N. laminaris. Journal of Comparative Neurology, 1975, 164, 435-448.	1.6	179
13	Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hearing Research, 1997, 104, 1-14.	2.0	175
14	Using the Zebrafish Lateral Line to Screen for Ototoxicity. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 178-190.	1.8	174
15	Afferent regulation of neurons in the brain stem auditory system. Journal of Neurobiology, 1990, 21, 169-196.	3.6	173
16	Organization and development of brain stem auditory nuclei of the chicken: Ontogeny of N. magnocellularis and N. laminaris. Journal of Comparative Neurology, 1976, 166, 469-489.	1.6	170
17	Hair Cell Replacement in Adult Mouse Utricles after Targeted Ablation of Hair Cells with Diphtheria Toxin. Journal of Neuroscience, 2012, 32, 15093-15105.	3.6	169
18	Afferent influences on brain stem auditory nuclei of the chicken: Time course and specificity of dendritic atrophy following deafferentation. Journal of Comparative Neurology, 1984, 229, 66-79.	1.6	158

#	Article	IF	CITATIONS
19	Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells. PLoS ONE, 2012, 7, e29727.	2.5	152
20	Caspase Activation in Hair Cells of the Mouse Utricle Exposed to Neomycin. Journal of Neuroscience, 2002, 22, 8532-8540.	3.6	151
21	Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. Journal of Comparative Neurology, 1993, 331, 97-110.	1.6	147
22	Physiologic Status of Regenerated Hair Cells in the Avian Inner Ear following Aminoglycoside Ototoxicity. Otolaryngology - Head and Neck Surgery, 1990, 103, 443-450.	1.9	142
23	Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hearing Research, 1989, 42, 175-194.	2.0	141
24	Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. Journal of Comparative Neurology, 2000, 426, 561-571.	1.6	141
25	Ontogeny of Structure and Function in the Vertebrate Auditory System. Handbook of Sensory Physiology, 1978, , 135-237.	0.8	140
26	Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hearing Research, 2007, 233, 46-53.	2.0	139
27	Organization and development of the brain stem auditory nuclei of the chicken: Primary afferent projections. Journal of Comparative Neurology, 1978, 180, 439-448.	1.6	138
28	A brief history of hair cell regeneration research and speculations on the future. Hearing Research, 2013, 297, 42-51.	2.0	137
29	Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils. Journal of Comparative Neurology, 1989, 283, 474-480.	1.6	136
30	The Superior Olivary Nucleus and Its Influence on Nucleus Laminaris: A Source of Inhibitory Feedback for Coincidence Detection in the Avian Auditory Brainstem. Journal of Neuroscience, 1999, 19, 2313-2325.	3.6	134
31	Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection. Journal of Neuroscience, 2010, 30, 70-80.	3.6	133
32	Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. Journal of Clinical Investigation, 2016, 126, 3556-3566.	8.2	133
33	Vulnerability and adaptation of distortion product otoacoustic emissions to endocochlear potential variation. Journal of the Acoustical Society of America, 1993, 94, 2108-2122.	1.1	128
34	Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. Journal of Comparative Neurology, 1992, 320, 501-508.	1.6	126
35	Rapid dendritic atrophy following deafferentation: An EM morphometric analysis. Brain Research, 1977, 122, 1-13.	2.2	125
36	Embryogenesis of arborization pattern and topography of individual axons in N. Laminaris of the chicken brain stem. Journal of Comparative Neurology, 1986, 254, 425-459.	1.6	125

#	Article	IF	CITATIONS
37	Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio) Tj ETQq1	l 0.784314 2.0	rgBT_/Over $_{125}^{\circ}$
38	Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion. Journal of Neuroscience, 2015, 35, 15050-15061.	3.6	124
39	Afferent influences on brain stem auditory nuclei of the chicken: Cessation of amino acid incorporation as an antecedent to age-dependent transneuronal degeneration. Journal of Comparative Neurology, 1985, 231, 385-395.	1.6	111
40	Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line. Zebrafish, 2010, 7, 3-11.	1.1	110
41	Identification of FDA-Approved Drugs and Bioactives that Protect Hair Cells in the Zebrafish (Danio) Tj ETQq1 1 in Otolaryngology, 2009, 10, 191-203.	0.784314 rş 1.8	gBT /Overloc 108
42	Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hearing Research, 2009, 253, 32-41.	2.0	108
43	Organization and development of brain stem auditory nuclei in the chick: Ontogeny of postsynaptic responses. Journal of Comparative Neurology, 1982, 210, 80-86.	1.6	107
44	Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. Journal of Comparative Neurology, 2007, 502, 522-543.	1.6	104
45	Lack of correspondence between mRNA expression for a putative cell death molecule (SGP-2) and neuronal cell death in the central nervous system. Journal of Neurobiology, 1991, 22, 590-604.	3.6	101
46	GABAergic Inhibition in Nucleus Magnocellularis: Implications for Phase Locking in the Avian Auditory Brainstem. Journal of Neuroscience, 2000, 20, 2954-2963.	3.6	101
47	Ultrastructural observations on regenerating hair cells in the chick basilar papilla. Hearing Research, 1990, 48, 161-182.	2.0	100
48	Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hearing Research, 2003, 186, 47-56.	2.0	100
49	Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. Journal of Comparative Neurology, 2005, 481, 6-18.	1.6	100
50	ER–Mitochondrial Calcium Flow Underlies Vulnerability of Mechanosensory Hair Cells to Damage. Journal of Neuroscience, 2014, 34, 9703-9719.	3.6	100
51	Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 645-659.	1.8	99
52	Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. Journal of Comparative Neurology, 1989, 279, 436-444.	1.6	98
53	Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. Journal of Comparative Neurology, 1993, 331, 75-96.	1.6	94
54	Hair Cell Differentiation in Chick Cochlear Epithelium after Aminoglycoside Toxicity: <b <="" i=""> In Vivo < i> < b> and <b <="" i=""> In Vitro < i> < b> Observations. Journal of Neuroscience, 1996, 16, 6157-6174.	3.6	94

#	Article	lF	CITATIONS
55	Afferent influences on brain stem auditory nuclei of the chicken: Changes in succinate dehydrogenase activity following cochlea removal. Journal of Comparative Neurology, 1985, 231, 446-456.	1.6	92
56	Drug screening for hearing loss: Using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discovery Today, 2010, 15, 265-271.	6.4	92
57	Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: Implications for development of the place principle. Journal of Comparative Neurology, 1985, 237, 273-289.	1.6	91
58	Auditory sensitivity of larval zebrafish (<i>Danio rerio</i>) measured using a behavioral prepulse inhibition assay. Journal of Experimental Biology, 2013, 216, 3504-3513.	1.7	91
59	Electrophysiological study of the maturation of auditory responses from the inner ear of the chick. Brain Research, 1981, 229, 15-23.	2.2	90
60	A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Research, 1995, 677, 117-126.	2.2	90
61	Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1. Journal of Comparative Neurology, 2004, 470, 93-106.	1.6	90
62	Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hearing Research, 2009, 253, 42-51.	2.0	90
63	Hair cell regeneration in the European starling (Sturnus vulgaris): Recovery of pure-tone detection thresholds. Hearing Research, 1993, 71, 125-136.	2.0	89
64	Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: Ontogeny of gradients in terminal staining. Journal of Comparative Neurology, 1989, 284, 504-518.	1.6	87
65	Recent insights into regeneration of auditory and vestibular hair cells. Current Opinion in Neurology, 1998, 11, 17-24.	3.6	87
66	The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2-deoxy-d-glucose autoradiography. Brain Research, 1980, 196, 43-58.	2.2	84
67	Afferent influences on brainstem auditory nuclei of the chick: Nucleus magnocellularis neuronal activity following cochlea removal. Brain Research, 1991, 557, 37-47.	2.2	83
68	Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. Journal of Comparative Neurology, 1994, 348, 111-120.	1.6	83
69	Afferent influences on brain stem auditory nuclei of the chicken: Effects of conductive and sensorineural hearing loss on N. Magnocellularis. Journal of Comparative Neurology, 1985, 238, 371-381.	1.6	82
70	Activity-Dependent Regulation of [Ca ²⁺] _i in Avian Cochlear Nucleus Neurons: Roles of Protein Kinases A and C and Relation to Cell Death. Journal of Neurophysiology, 1998, 79, 2288-2302.	1.8	82
71	Ontogeny of behavioral responsiveness to sound in the chick embryo as indicated by electrical recordings of motility Journal of Comparative and Physiological Psychology, 1978, 92, 682-696.	1.8	81
72	A comparison of somatotopic organization in sensory neocortex of newborn kittens and adult cats. Journal of Comparative Neurology, 1971, 143, 447-480.	1.6	80

#	Article	IF	CITATIONS
73	Patterns of Hair Cell Loss in Chick Basilar Papilla After Intense Auditory Stimulation ¹ :Frequency Organization. Acta Oto-Laryngologica, 1982, 93, 205-210.	0.9	80
74	Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line. Journal of Neuroscience, 2013, 33, 4405-4414.	3.6	80
75	Embryonic Origins of Auditory Brain-Stem Nuclei in the Chick Hindbrain. Developmental Biology, 2000, 224, 138-151.	2.0	78
76	Hair Cell Death in the Avian Basilar Papilla: Characterization of the in vitro Model and Caspase Activation. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 91-105.	1.8	78
77	Temporal, spatial, and morphologic features of hair cell regeneration in the avian basilar papilla. Journal of Comparative Neurology, 2000, 417, 1-16.	1.6	76
78	Identification of Modulators of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2012, 32, 3516-3528.	3.6	76
79	Disruption of Intracellular Calcium Regulation Is Integral to Aminoglycoside-Induced Hair Cell Death. Journal of Neuroscience, 2013, 33, 7513-7525.	3.6	75
80	Development of absolute thresholds in chickens. Journal of the Acoustical Society of America, 1985, 77, 1162-1172.	1,1	73
81	Overexpression of <i>Bclâ€2</i> prevents neomycinâ€induced hair cell death and caspaseâ€9 activation in the adult mouse utricle <i>in vitro</i> . Journal of Neurobiology, 2004, 60, 89-100.	3.6	73
82	Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 393-408.	4.9	73
83	Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. Journal of Comparative Neurology, 1989, 281, 234-258.	1.6	70
84	Hair-cell regeneration in organ cultures of the postnatal chicken inner ear. Hearing Research, 1993, 70, 85-108.	2.0	69
85	Selective Deletion of Cochlear Hair Cells Causes Rapid Age-Dependent Changes in Spiral Ganglion and Cochlear Nucleus Neurons. Journal of Neuroscience, 2015, 35, 7878-7891.	3.6	69
86	Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hearing Research, 2012, 294, 153-165.	2.0	68
87	Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. Journal of Clinical Investigation, 2016, 127, 472-486.	8.2	67
88	Sprouting in the avian brainstem auditory pathway: Dependence on dendritic integrity. Journal of Comparative Neurology, 1981, 202, 397-414.	1.6	65
89	Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor-I and insulin. , 1997, 380, 262-274.		65
90	JNK signaling in neomycin-induced vestibular hair cell death. Hearing Research, 2006, 221, 128-135.	2.0	62

#	Article	IF	Citations
91	Patterns of Hair Cell Loss in Chick Basilar Papilla After Intense Auditory Stimulation: Exposure duration and survival time. Acta Oto-Laryngologica, 1982, 93, 31-41.	0.9	59
92	Anatomical Correlates of Functional Recovery in the Avian Inner Ear Following Aminoglycoside Ototoxicity. Laryngoscope, 1991, 101, 1139???1149.	2.0	59
93	Dynamic Studies of Ototoxicity in Mature Avian Auditory Epithelium. Annals of the New York Academy of Sciences, 1999, 884, 389-409.	3.8	59
94	Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 2006, 216-217, 127-137.	2.0	59
95	Phenotypic Optimization of Urea–Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. Journal of Medicinal Chemistry, 2018, 61, 84-97.	6.4	58
96	bcl-2 Overexpression Eliminates Deprivation-Induced Cell Death of Brainstem Auditory Neurons. Journal of Neuroscience, 2002, 22, 4670-4674.	3.6	58
97	FGFR3 Expression during Development and Regeneration of the Chick Inner Ear Sensory Epithelia. Developmental Biology, 2001, 238, 247-259.	2.0	57
98	Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hearing Research, 2012, 288, 58-66.	2.0	57
99	Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick. Journal of Neurocytology, 1999, 28, 863-876.	1.5	56
100	The Level and Integrity of Synaptic Input Regulates Dendrite Structure. Journal of Neuroscience, 2006, 26, 1539-1550.	3.6	56
101	Differential Conduction Velocity Regulation in Ipsilateral and Contralateral Collaterals Innervating Brainstem Coincidence Detector Neurons. Journal of Neuroscience, 2014, 34, 4914-4919.	3.6	56
102	Changes in Spontaneous Activity and Cns Morphology Associated with Conductive and Sensorineural Hearing Loss in Chickens. Annals of Otology, Rhinology and Laryngology, 1987, 96, 343-350.	1.1	55
103	Extracellular potassium influences DNA and protein syntheses and glial fibrillary acidic protein expression in cultured glial cells. Glia, 1990, 3, 368-374.	4.9	55
104	Mechanosensory projections to cerebral cortex of sheep. Journal of Comparative Neurology, 1974, 158, 81-107.	1.6	54
105	GABAergic neurons in brainstem auditory nuclei of the chick: Distribution, morphology, and connectivity. Journal of Comparative Neurology, 1989, 287, 470-483.	1.6	53
106	Development of the Place Principle. Annals of Otology, Rhinology and Laryngology, 1984, 93, 609-615.	1.1	52
107	Cellular distribution of the fragile X mental retardation protein in the mouse brain. Journal of Comparative Neurology, 2017, 525, 818-849.	1.6	52
108	ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight, 2019, 4, .	5.0	52

#	Article	IF	CITATIONS
109	Ultrastructure of hyaline, border, and vacuole cells in chick inner ear. Journal of Comparative Neurology, 1992, 318, 64-82.	1.6	50
110	Class III ?-tubulin expression in sensory and nonsensory regions of the developing avian inner ear. Journal of Comparative Neurology, 1999, 406, 183-198.	1.6	50
111	Developmental and experiential changes in dendritic symmetry in n. laminaris of the chick. Brain Research, 1982, 244, 360-364.	2.2	47
112	The zebrafish <i>merovingian</i> mutant reveals a role for pH regulation in hair cell toxicity and function. DMM Disease Models and Mechanisms, 2014, 7, 847-856.	2.4	47
113	Tonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesis. Journal of Neurobiology, 2004, 60, 28-39.	3.6	46
114	Developmental regulation of ephA4 expression in the chick auditory brainstem. Journal of Comparative Neurology, 2000, 426, 270-278.	1.6	44
115	Expression of EphB receptors and EphrinB ligands in the developing chick auditory brainstem. Journal of Comparative Neurology, 2002, 452, 51-64.	1.6	44
116	Rapid growth of astrocytic processes in N. Magnocellularis following cochlea removal. Journal of Comparative Neurology, 1992, 318, 415-425.	1.6	43
117	Characterization of Damage and Regeneration in Cultured Avian Utricles. JARO - Journal of the Association for Research in Otolaryngology, 2000, 1, 46-63.	1.8	43
118	Ultrastructural analysis of [3H]thymidine-labeled cells in the rat utricular macula. Journal of Comparative Neurology, 2003, 463, 177-195.	1.6	42
119	Fish in a dish: drug discovery for hearing habilitation. Drug Discovery Today: Disease Models, 2013, 10, e23-e29.	1.2	42
120	Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry. Journal of Neurophysiology, 2011, 106, 4-14.	1.8	41
121	Electron microscopy of degenerative changes in the chick basilar papilla after gentamicin exposure. Journal of Comparative Neurology, 2004, 470, 164-180.	1.6	40
122	Development of Glutamatergic Synaptic Transmission in Binaural Auditory Neurons. Journal of Neurophysiology, 2010, 104, 1774-1789.	1.8	40
123	Cochlear ablation in deafness mutant mice: 2-deoxyglucose analysis suggests no spontaneous activity of cochlear origin. Hearing Research, 1989, 43, 39-46.	2.0	39
124	Cochlear nucleus cell size is regulated by auditory nerve electrical activity. Otolaryngology - Head and Neck Surgery, 1991, 104, 6-13.	1.9	39
125	Development of Spontaneous Miniature EPSCs in Mouse AVCN Neurons During a Critical Period of Afferent-Dependent Neuron Survival. Journal of Neurophysiology, 2007, 97, 635-646.	1.8	39
126	Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: A comparative study in the alligator, chicken, gerbil, and human. Journal of Comparative Neurology, 2014, 522, 2107-2128.	1.6	39

#	Article	IF	Citations
127	Gene expression differences over a critical period of afferent-dependent neuron survival in the mouse auditory brainstem. Journal of Comparative Neurology, 2005, 493, 460-474.	1.6	37
128	Transgenic quail as a model for research in the avian nervous system: A comparative study of the auditory brainstem. Journal of Comparative Neurology, 2013, 521, 5-23.	1.6	36
129	Astrocyte proliferation in the chick auditory brainstem following cochlea removal. Journal of Comparative Neurology, 1994, 346, 276-288.	1.6	35
130	Second Place â€" Resident Basic Science Award 1995: Mitochondrial Role in Hair Cell Survival after Injury. Otolaryngology - Head and Neck Surgery, 1995, 113, 530-540.	1.9	35
131	Activity-dependent regulation of a ribosomal RNA epitope in the chick cochlear nucleus. Brain Research, 1995, 672, 196-204.	2.2	34
132	Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. Journal of Comparative Neurology, 1999, 413, 271-288.	1.6	34
133	Identification of Small Molecule Inhibitors of Cisplatin-Induced Hair Cell Death. Otology and Neurotology, 2015, 36, 519-525.	1.3	33
134	Development of Cat-301 immunoreactivity in auditory brainstem nuclei of the gerbil., 1997, 380, 319-334.		32
135	Glutamate Regulates IP ₃ -Type and CICR Stores in the Avian Cochlear Nucleus. Journal of Neurophysiology, 1999, 81, 1587-1596.	1.8	32
136	Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. Journal of Comparative Neurology, 2003, 466, 577-591.	1.6	31
137	Changes in neuronal cell bodies in N. laminaris during deafferentation-induced dendritic atrophy. Journal of Comparative Neurology, 1989, 281, 259-268.	1.6	30
138	Altered malate dehydrogenase activity in nucleus magnocellularis of the chicken following cochlea removal. Hearing Research, 1993, 70, 151-159.	2.0	30
139	Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Frontiers in Cellular Neuroscience, 2015, 9, 46.	3.7	30
140	Development of responsiveness to suprathreshold acoustic stimulation in chickens Journal of Comparative and Physiological Psychology, 1981, 95, 188-198.	1.8	29
141	Glycine-immunoreactivity in the auditory brain stem of the chick. Hearing Research, 1989, 40, 167-172.	2.0	29
142	De novo sequencing and initial annotation of the Mongolian gerbil (Meriones unguiculatus) genome. Genomics, 2019, 111, 441-449.	2.9	29
143	Protein Masking of a Ribosomal RNA Epitope Is an Early Event in Afferent Deprivation-Induced Neuronal Death. Molecular and Cellular Neurosciences, 1995, 6, 293-310.	2.2	28
144	GABAB Receptor Activation Modulates GABAA Receptor-Mediated Inhibition in Chicken Nucleus Magnocellularis Neurons. Journal of Neurophysiology, 2005, 93, 1429-1438.	1.8	26

#	Article	IF	CITATIONS
145	Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Journal of Cell Science, 2016, 129, 2250-60.	2.0	26
146	Influence of acoustic experience on the ontogeny of frequency generalization gradients in the chicken Journal of Experimental Psychology, 1979, 5, 97-115.	1.7	25
147	Activation of Metabotropic Glutamate Receptors Inhibits High-Voltage-Gated Calcium Channel Currents of Chicken Nucleus Magnocellularis Neurons. Journal of Neurophysiology, 2005, 93, 1418-1428.	1.8	25
148	Afferent Deprivation Elicits a Transcriptional Response Associated with Neuronal Survival after a Critical Period in the Mouse Cochlear Nucleus. Journal of Neuroscience, 2008, 28, 10990-11002.	3.6	25
149	Differential susceptibility of avian hair cells to acoustic trauma. Hearing Research, 1985, 19, 73-84.	2.0	24
150	Glutamate-stimulated phosphatidylinositol metabolism in the avian cochlear nucleus. Neuroscience Letters, 1994, 168, 163-166.	2.1	24
151	Choosing axonal real estate: Location, location, location. Journal of Comparative Neurology, 2002, 448, 1-5.	1.6	24
152	Strategies and Problems for Future Studies of Auditory Development. Acta Oto-Laryngologica, 1985, 99, 114-128.	0.9	23
153	Afferent influences on brainstem auditory nuclei of the chicken: Regulation of transcriptional activity following cochlea removal. Journal of Comparative Neurology, 1995, 359, 412-423.	1.6	23
154	Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla. Hearing Research, 2001, 156, 81-94.	2.0	23
155	Rapid regulation of cytoskeletal proteins and their mRNAs following afferent deprivation in the avian cochlear nucleus. Journal of Comparative Neurology, 1997, 389, 469-483.	1.6	22
156	Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3: Genes, Genomes, Genetics, 2016, 6, 2225-2235.	1.8	22
157	Chloroquine kills hair cells in zebrafish lateral line and murine cochlear cultures: Implications for ototoxicity. Hearing Research, 2020, 395, 108019.	2.0	22
158	Loss of Slc4a1b Chloride/Bicarbonate Exchanger Function Protects Mechanosensory Hair Cells from Aminoglycoside Damage in the Zebrafish Mutant persephone. PLoS Genetics, 2012, 8, e1002971.	3.5	21
159	Influence of mitochondrial protein synthesis inhibition on deafferentation?induced ultrastructural changes in nucleus magnocellularis of developing chicks., 1996, 371, 448-460.		20
160	Formation of the avian nucleus magnocellularis from the auditory anlage. Journal of Comparative Neurology, 2006, 498, 433-442.	1.6	20
161	Maintenance of neuronal size gradient in MNTB requires sound-evoked activity. Journal of Neurophysiology, 2017, 117, 756-766.	1.8	20
162	Glutamatergic and GABAergic agonists increase [Ca2+]i in avian cochlear nucleus neurons., 1998, 37, 321-337.		17

#	Article	IF	CITATIONS
163	Expression of GABAB receptor in the avian auditory brainstem: Ontogeny, afferent deprivation, and ultrastructure. Journal of Comparative Neurology, 2005, 489, 11-22.	1.6	17
164	TrkB Downregulation Is Required for Dendrite Retraction in Developing Neurons of Chicken Nucleus Magnocellularis. Journal of Neuroscience, 2012, 32, 14000-14009.	3.6	17
165	Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 741-752.	1.8	17
166	<i>In Vivo</i> Reversible Regulation of Dendritic Patterning by Afferent Input in Bipolar Auditory Neurons. Journal of Neuroscience, 2012, 32, 11495-11504.	3.6	16
167	Correcting errors in estimating neuron area caused by the position of the nucleolus. Journal of Comparative Neurology, 1987, 255, 146-152.	1.6	15
168	Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem. Journal of Comparative Neurology, 2000, 421, 199-214.	1.6	15
169	Compartmentâ€specific regulation of plasma membrane calcium ATPase type 2 in the chick auditory brainstem. Journal of Comparative Neurology, 2009, 514, 624-640.	1.6	15
170	Hair Cell Generation in Vestibular Sensory Receptor Epithelia. Annals of the New York Academy of Sciences, 1996, 781, 34-46.	3.8	14
171	Spontaneous hair cell regeneration in the neonatal mouse cochlea <i>in vivo</i> . Development (Cambridge), 2014, 141, 1599-1599.	2.5	14
172	Mitochondrial Regulation of Calcium in the Avian Cochlear Nucleus. Journal of Neurophysiology, 1997, 78, 1928-1934.	1.8	13
173	Preparation and Culture of Chicken Auditory Brainstem Slices. Journal of Visualized Experiments, 2011,	0.3	13
174	Assembling, Connecting, and Maintaining the Cochlear Nucleus. Springer Handbook of Auditory Research, 2004, , 8-48.	0.7	13
175	Topography and morphology of the inhibitory projection from superior olivary nucleus to nucleus laminaris in chickens (<i>Gallus gallus</i>). Journal of Comparative Neurology, 2011, 519, 358-375.	1.6	12
176	Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem. Journal of Comparative Neurology, 2012, 520, 1493-1508.	1.6	12
177	Chronic Perilymphatic Fistula: Experimental Model in the Guinea Pig. Otolaryngology - Head and Neck Surgery, 1988, 99, 380-388.	1.9	11
178	Glial Cell Contributions to Auditory Brainstem Development. Frontiers in Neural Circuits, 2016, 10, 83.	2.8	11
179	Effects of cochlea removal on GABAergic terminals in nucleus magnocellularis of the chicken. Journal of Comparative Neurology, 1990, 301, 643-654.	1.6	10
180	Afferent regulation of chicken auditory brainstem neurons: Rapid changes in phosphorylation of elongation factor 2. Journal of Comparative Neurology, 2013, 521, 1165-1183.	1.6	10

#	Article	lF	Citations
181	Life and Death in Otolaryngology. JAMA Otolaryngology, 1999, 125, 729.	1.2	9
182	Three-dimensional confocal microscopy of the mammalian inner ear. Audiological Medicine, $2010, 8, 120-128$.	0.4	9
183	Hair Cell Regeneration in the Avian Inner Ear. Novartis Foundation Symposium, 1991, 160, 77-102.	1.1	9
184	Stimulating hair cell regeneration: On a wing and a prayer. Nature Medicine, 1996, 2, 1082-1083.	30.7	8
185	Neurofilament proteins in avian auditory hair cells. Journal of Comparative Neurology, 1997, 379, 603-616.	1.6	8
186	Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. Journal of Comparative Neurology, 2017, 525, 3341-3359.	1.6	7
187	Freeze-fracture of neurons in nucleus magnocellularis of the chick. Hearing Research, 1985, 17, 67-78.	2.0	6
188	The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biology Open, 2018, 8, .	1.2	6
189	Hearing Loss, Protection, and Regeneration in the Larval Zebrafish Lateral Line. Springer Handbook of Auditory Research, 2013, , 313-347.	0.7	5
190	Preâ€target axon sorting in the avian auditory brainstem. Journal of Comparative Neurology, 2013, 521, 2310-2320.	1.6	2
191	Temporal, spatial, and morphologic features of hair cell regeneration in the avian basilar papilla. , 0, .		2
192	Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal., 2000, 426, 561.		1
193	Zebrafish Neuromast Hair Cell Nuclei are Labeled in Vivo by Uptake of Monomeric Cyanine Dyes. Microscopy and Microanalysis, 2002, 8, 1058-1059.	0.4	0
194	Transgenic quail as a model for research in the avian nervous system: A comparative study of the auditory brainstem. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	0
195	Modifying Dendritic Structure After Function. , 2016, , 245-270.		0
196	An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Frontiers in Molecular Neuroscience, 0, 15 , .	2.9	0