Marek Bryjak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11686838/publications.pdf

Version: 2024-02-01

		147801	168389
99	3,193	31	53
papers	citations	h-index	g-index
101	101	101	2814
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modified Poly(vinylidene fluoride) by Diethylenetriamine as a Supported Anion Exchange Membrane for Lithium Salt Concentration by Hybrid Capacitive Deionization. Membranes, 2022, 12, 103.	3.0	5
2	Current status of ion exchange membranes for electrodialysis/reverse electrodialysis and membrane capacitive deionization/capacitive mixing., 2022,, 575-602.		0
3	Electro-Driven Materials and Processes for Lithium Recovery—A Review. Membranes, 2022, 12, 343.	3.0	7
4	Molecularly Imprinting Microfiltration Membranes Able to Absorb Diethyl Phthalate from Water. Membranes, 2022, 12, 503.	3.0	3
5	Grand Challenges in Membrane Modules and Processes. , 2022, 1, .		3
6	Reclamation of RO permeate and concentrate of geothermal water by new chelating resins having N-methyl-D-glucamine ligands. Separation and Purification Technology, 2021, 254, 117558.	7.9	7
7	A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. Resources, Conservation and Recycling, 2021, 168, 105273.	10.8	41
8	Surface-Activated Chelating Resins Containing N-Methyl-D-Glucamine Functional Groups for Desalination of Geothermal Water Aimed for Removal of Boron and Arsenic. Solvent Extraction and Ion Exchange, 2021, 39, 584-603.	2.0	4
9	Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure. Water (Switzerland), 2021, 13, 814.	2.7	14
10	Membrane assisted processing of acetone, butanol, and ethanol (ABE) aqueous streams. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108462.	3.6	16
11	Utilization of renewable energy sources in desalination of geothermal water for agriculture. Desalination, 2021, 513, 115151.	8.2	46
12	Selective sorbents for recovery of lithium ions by hybrid capacitive deionization. Desalination, 2021, 520, 115324.	8.2	22
13	Charge-doped electrodes for power production using the salinity gradient in CapMix. Desalination, 2020, 495, 114670.	8.2	11
14	Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination, 2020, 491, 114504.	8.2	64
15	Interpolymer ion exchange membranes for CapMix process. Desalination, 2020, 482, 114384.	8.2	10
16	Novel anion exchange membrane for concentration of lithium salt in hybrid capacitive deionization. Desalination, 2019, 452, 279-289.	8.2	30
17	Lithium capturing from geothermal water by hybrid capacitive deionization. Desalination, 2018, 436, 8-14.	8.2	79
18	Modification of poly(vinyl chloride) films by aliphatic amines to prepare anion-exchange membranes for Cr (VI) removal. Separation Science and Technology, 2018, 53, 1191-1197.	2.5	18

#	Article	IF	Citations
19	Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method. Separation and Purification Technology, 2018, 194, 231-238.	7.9	33
20	Cr(III) REMOVAL FROM AQUEOUS SOLUTION BYION EXCHANGE RESINS CONTAINING CARBOXYLIC ACID AND SULPHONIC ACID GROUPS. Journal of the Chilean Chemical Society, 2018, 63, 4012-4018.	1.2	6
21	Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties. Materials, 2018, 11, 707.	2.9	59
22	Removal of boron and arsenic from geothermal water by ion-exchange. , 2018, , 135-155.		3
23	Concept for energy harvesting from the salinity gradient on the basis of geothermal water. WEENTECH Proceedings in Energy, 2018, 4, 88-96.	0.0	3
24	Amberlite IRA-400 and IRA-743 chelating resins for the sorption and recovery of molybdenum(VI) and vanadium(V): Equilibrium and kinetic studies. Hydrometallurgy, 2017, 169, 496-507.	4.3	33
25	Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Separation and Purification Technology, 2017, 188, 512-522.	7.9	28
26	Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Advances, 2017, 7, 56704-56712.	3.6	40
27	Dewatering of 2,2,3,3-tetrafluoropropan-1-ol by hydrophilic pervaporation with poly(vinyl alcohol) based Pervapâ,,¢ membranes. Separation and Purification Technology, 2017, 174, 520-528.	7.9	22
28	Removal of $Cr(VI)$ from aqueous solution by a highly efficient chelating resin. Polymer Bulletin, 2017, 74, 2033-2044.	3.3	8
29	Preparation of various nanofibrous composite membranes using wire electrospinning for oil-water separation. IOP Conference Series: Materials Science and Engineering, 2017, 254, 102011.	0.6	6
30	Hybrid capacitive deionization with anion-exchange membranes for lithium extraction. E3S Web of Conferences, 2017, 22, 00157.	0.5	17
31	Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater. Polymers, 2017, 9, 679.	4.5	30
32	Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane. Desalination and Water Treatment, 2016, 57, 861-869.	1.0	16
33	Membranes with a plasma deposited titanium isopropoxide layer. Chemical Papers, 2016, 70, .	2.2	3
34	How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7564-7577.	8.0	56
35	Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water–organic solvent mixtures. Journal of Membrane Science, 2016, 499, 442-451.	8.2	106
36	Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl- d -glucamine groups. Chemical Engineering Journal, 2016, 284, 395-404.	12.7	52

#	Article	IF	CITATIONS
37	Removal of volatile organic compounds from aqueous solutions applying thermally driven membrane processes. 2. Air gap membrane distillation. Journal of Membrane Science, 2016, 499, 245-256.	8.2	40
38	Ultrafiltration assisted by water-soluble poly(diallyl dimethyl ammonium chloride) for As(V) removal. Polymer Bulletin, 2016, 73, 241-254.	3.3	9
39	New Coreâ€Shell Type Polymeric Supports Based on the Amberlite XADâ€4 Adsorbent: A Novel Synthesis Procedure. Chinese Journal of Chemistry, 2015, 33, 594-600.	4.9	15
40	Polypropylene membranes modified with interpenetrating polymer networks for the removal of chromium ions. Journal of Applied Polymer Science, $2015,132,.$	2.6	6
41	Boron Removal From Water by Sorption–Membrane Filtration HybridÂProcess. , 2015, , 237-248.		1
42	Boron Removal From Seawater Using Reverse Osmosis Integrated Processes. , 2015, , 219-235.		5
43	ABE fermentation products recovery methods—A review. Renewable and Sustainable Energy Reviews, 2015, 48, 648-661.	16.4	221
44	Removal of volatile organic compounds from aqueous solutions applying thermally driven membrane processes. 1. Thermopervaporation. Chemical Engineering and Processing: Process Intensification, 2015, 94, 62-71.	3.6	30
45	Polypropylene membranes with the double sensitivity effect. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
46	Plasma deposited fluorinated films on porous membranes. Materials Chemistry and Physics, 2015, 151, 233-242.	4.0	31
47	Waterâ€insoluble copolymer based on <i>N</i> à€methylâ€ <scp>d</scp> â€glucamine and quaternary ammonium groups with capability to remove arsenic. Environmental Progress and Sustainable Energy, 2014, 33, 1187-1193.	1 2.3	4
48	Removal of Bisphenol A from Aqueous Solution by Molecularly Imprinted Polymers. Separation Science and Technology, 2014, 49, 1643-1653.	2.5	15
49	A comparative study of removal of Cr(<scp>VI</scp>) by ion exchange resins bearing quaternary ammonium groups. Journal of Chemical Technology and Biotechnology, 2014, 89, 851-857.	3.2	25
50	Adsorption of Bisphenol A from Water-Ethanol Mixtures on Pulverized Activated Carbon. Separation Science and Technology, 2014, 49, 763-772.	2.5	10
51	Molecularly imprinted polystyrene-divinylbenzene adsorbents for removal of bisphenol A. Desalination and Water Treatment, 2014, 52, 1885-1894.	1.0	13
52	pH-sensitive membranes for lithium separation. Materials Chemistry and Physics, 2014, 148, 548-553.	4.0	17
53	Removal of Cr(VI) by a chelating resin containing N-methyl-d-glucamine. Polymer Bulletin, 2014, 71, 1813-1825.	3.3	13
54	Waterâ€soluble polymer and photocatalysis for arsenic removal. Journal of Applied Polymer Science, 2014, 131, .	2.6	13

#	Article	IF	CITATIONS
55	Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures. Separation and Purification Technology, 2014, 132, 422-429.	7.9	59
56	Bipolar nanofiltration membranes based on plasma modified microfilters. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
57	Removal of As(V) using liquid-phase polymer-based retention (LPR) technique with regenerated cellulose membrane as a filter. Polymer Bulletin, 2013, 70, 2633-2644.	3.3	12
58	Anion-exchange membranes for separation of borates by Donnan dialysis. Desalination, 2013, 310, 39-42.	8.2	18
59	Methods for boron removal from aqueous solutions â€" A review. Desalination, 2013, 310, 18-24.	8.2	208
60	Removal of boron from geothermal water by a novel boron selective resin. Desalination, 2013, 310, 102-108.	8.2	35
61	Boron removal by liquidâ€phase polymerâ€based retention technique using poly(glycidyl methacrylate) Tj ETQq1	1 0.78431 2.6	4 rgBT /Ove
62	Sorption of Phthalates on Molecularly Imprinted Polymers. Separation Science and Technology, 2012, 47, 1316-1321.	2.5	16
63	Stimuli response polypropylene membranes as selective separators for alkaline ions. Desalination, 2012, 300, 64-69.	8.2	5
64	Plasma Modification of Polymer Membranes. , 2012, , 179-214.		2
64	Plasma Modification of Polymer Membranes. , 2012, , 179-214. Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197.	8.2	55
	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane	8.2	
65	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197. Molecularly Imprinted Membranes for Removal of Bisphenol A. Solvent Extraction and Ion Exchange,		55
65	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197. Molecularly Imprinted Membranes for Removal of Bisphenol A. Solvent Extraction and Ion Exchange, 2011, 29, 432-439. Microwave plasmaâ€initiated grafting of acrylic acid on Celgard 2500 membrane to prepare alkaline battery separatorsâ€"Characteristics of process and product. Journal of Applied Polymer Science, 2010,	2.0	6
65 66 67	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197. Molecularly Imprinted Membranes for Removal of Bisphenol A. Solvent Extraction and Ion Exchange, 2011, 29, 432-439. Microwave plasmaâ&initiated grafting of acrylic acid on Celgard 2500 membrane to prepare alkaline battery separatorsâ&"Characteristics of process and product. Journal of Applied Polymer Science, 2010, 116, 868-875. Polymeric microspheres with N-methyl-d-glucamine ligands for boron removal from water solution	2.0	5566
65 66 67 68	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197. Molecularly Imprinted Membranes for Removal of Bisphenol A. Solvent Extraction and Ion Exchange, 2011, 29, 432-439. Microwave plasmaâ€initiated grafting of acrylic acid on Celgard 2500 membrane to prepare alkaline battery separatorsâ€"Characteristics of process and product. Journal of Applied Polymer Science, 2010, 116, 868-875. Polymeric microspheres with N-methyl-d-glucamine ligands for boron removal from water solution by adsorptionâ€"membrane filtration process. Environmental Geochemistry and Health, 2010, 32, 349-352.	2.0 2.6 3.4	556636
65 66 67 68	Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination, 2011, 283, 193-197. Molecularly Imprinted Membranes for Removal of Bisphenol A. Solvent Extraction and Ion Exchange, 2011, 29, 432-439. Microwave plasmaâ€initiated grafting of acrylic acid on Celgard 2500 membrane to prepare alkaline battery separatorsâ€"Characteristics of process and product. Journal of Applied Polymer Science, 2010, 116, 868-875. Polymeric microspheres with N-methyl-d-glucamine ligands for boron removal from water solution by adsorptionâ€"membrane filtration process. Environmental Geochemistry and Health, 2010, 32, 349-352. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161, 2-9.	2.0 2.6 3.4 14.7	55663628

#	Article	IF	CITATIONS
73	Donnan dialysis of borate anions through anion exchange membranes: A new method for regeneration of boron selective resins. Reactive and Functional Polymers, 2007, 67, 1635-1642.	4.1	19
74	Removal of boron from seawater by selective ion exchange resins. Reactive and Functional Polymers, 2007, 67, 1643-1650.	4.1	116
75	Removal of boron from aqueous solutions by a hybrid ion exchange–membrane process. Desalination, 2006, 198, 158-165.	8.2	54
76	Poly(phenylene oxide) films modified with allylamine plasma as a support for invertase immobilization. European Polymer Journal, 2006, 42, 2430-2440.	5.4	23
77	Plasma-modified polypropylene membranes as separators in high-power alkaline batteries. Surface and Coatings Technology, 2006, 201, 3676-3684.	4.8	37
78	Plasma modified polymers as a support for enzyme immobilization 1 European Polymer Journal, 2003, 39, 1615-1622.	5.4	53
79	N-butylamine plasma modifying ultrafiltration polysulfone membranes. Desalination, 2002, 146, 293-299.	8.2	15
80	Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38, 717-726.	5.4	115
81	Modification of polysulfone membranes 5. Effect of n-butylamine and allylamine plasma. European Polymer Journal, 2002, 38, 1937-1946.	5.4	67
82	Modification of polysulfone membranes. European Polymer Journal, 2000, 36, 1563-1569.	5.4	119
83	Modification of polysulfone membranes 1. CO2 plasma treatment. European Polymer Journal, 1999, 35, 1419-1428.	5.4	148
84	Surface Evaluation of Plasma-Modified Polysulfone (Udel P-1700) Films. Langmuir, 1999, 15, 6400-6404.	3.5	32
85	Modification of porous polyacrylonitrile membrane. Angewandte Makromolekulare Chemie, 1998, 260, 25-29.	0.2	35
86	Air plasma treatment of polyacrylonitrile porous membrane. Angewandte Makromolekulare Chemie, 1996, 234, 21-29.	0.2	27
87	Sulfonated polysulfone membranes with antifouling activity. Angewandte Makromolekulare Chemie, 1995, 233, 23-31.	0.2	20
88	Plasma treatment of polyethylene ultrafiltration membranes. Angewandte Makromolekulare Chemie, 1994, 219, 117-124.	0.2	23
89	Porous ion-exchange membranes, 2. Effect of adhesion promoters. Angewandte Makromolekulare Chemie, 1993, 205, 131-139.	0.2	4
90	Title is missing!. Angewandte Makromolekulare Chemie, 1993, 207, 111-121.	0.2	6

#	Article	IF	CITATIONS
91	Porous ion exchange membranes as potential antifoulants. Angewandte Makromolekulare Chemie, 1993, 208, 173-181.	0.2	5
92	Transport of dipeptides and phosphono dipeptides through an immobilized liquid membrane. Stereoselectivity of the process. Journal of Membrane Science, 1993, 78, 83-91.	8.2	14
93	Enantioselective transport of amino acid through supported chiral liquid membranes. Journal of Membrane Science, 1993, 85, 221-228.	8.2	51
94	Synthesis and properties of porous ion-exchange membranes, I. Polymer-polymer-filler system. Angewandte Makromolekulare Chemie, 1992, 200, 93-108.	0.2	12
95	Transport of amino acids and their phosphonic acid analogues through supported liquid membranes containing macrocyclic carriers. Experimental parameters. Journal of Membrane Science, 1991, 56, 167-180.	8.2	29
96	Crown-ether mediated transport of amino acids through an immobilized liquid membrane. Journal of Membrane Science, 1988, 37, 287-291.	8.2	20
97	The use of activated carbon modified with polypyrrole as a supporting electrode for lithium ions adsorption in capacitive deionization., 0, 64, 251-254.		14
98	Anion exchange membranes in lithium extraction by means of capacitive deionization system., 0, 75, 331-341.		15
99	The evaluation of the effectiveness of lithium separation by hybrid capacitive deionization from geothermal water with the uncertainty measurement application., 0, 128, 259-264.		10