Marino Convertino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11685163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and characterization of novel candidate compounds targeting 6―and 7â€ŧransmembrane μâ€opioid receptor isoforms. British Journal of Pharmacology, 2021, 178, 2709-2726.	5.4	4
2	Stabilization of μâ€opioid receptor facilitates its cellular translocation and signaling. Proteins: Structure, Function and Bioinformatics, 2019, 87, 878-884.	2.6	6
3	Discovery of Novel Adenosine Receptor Antagonists through a Combined Structure- and Ligand-Based Approach Followed by Molecular Dynamics Investigation of Ligand Binding Mode. Journal of Chemical Information and Modeling, 2018, 58, 794-815.	5.4	22
4	Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells. ChemBioChem, 2018, 19, 2178-2185.	2.6	40
5	miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus. Neuron, 2018, 99, 449-463.e6.	8.1	79
6	Molecular Mechanisms of the R61T Mutation in Apolipoprotein E4: A Dynamic Rescue. Biophysical Journal, 2017, 113, 2192-2198.	0.5	2
7	Reducing the Flexibility of Typeâ€II Dehydroquinase for Inhibition: A Fragmentâ€Based Approach and Molecular Dynamics Study. ChemMedChem, 2017, 12, 1512-1524.	3.2	4
8	Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Scientific Reports, 2016, 5, 18198.	3.3	34
9	Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise. Journal of Chemical Information and Modeling, 2016, 56, 1032-1041.	5.4	15
10	Pharmacological Chaperones: Design and Development of New Therapeutic Strategies for the Treatment of Conformational Diseases. ACS Chemical Biology, 2016, 11, 1471-1489.	3.4	85
11	Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities. Methods in Molecular Biology, 2016, 1414, 23-32.	0.9	4
12	The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition. ChemMedChem, 2016, 11, 1252-1258.	3.2	33
13	ApoE4-specific Misfolded Intermediate Identified by Molecular Dynamics Simulations. PLoS Computational Biology, 2015, 11, e1004359.	3.2	21
14	Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS ONE, 2015, 10, e0142826.	2.5	14
15	Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. Journal of Pain, 2015, 16, 1321-1333.	1.4	27
16	An optimized polyamine moiety boosts the potency of human type II topoisomerase poisons as quantified by comparative analysis centered on the clinical candidate F14512. Chemical Communications, 2015, 51, 14310-14313.	4.1	32
17	μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 62, 61-67.	4.8	26
18	Carnosine Inhibits Al² ₄₂ Aggregation by Perturbing the Hâ€Bond Network in and around the Central Hydrophobic Cluster. ChemBioChem, 2013, 14, 583-592.	2.6	76

MARINO CONVERTINO

#	Article	IF	CITATIONS
19	Methylations of Tryptophan-Modified Naphthoquinone Affect Its Inhibitory Potential toward Aβ Aggregation. Journal of Physical Chemistry B, 2013, 117, 1780-1789.	2.6	16
20	Structural Basis for Inhibiting β-Amyloid Oligomerization by a Non-coded β-Breaker-Substituted Endomorphin Analogue. ACS Chemical Biology, 2011, 6, 1265-1276.	3.4	32
21	Disordered Binding of Small Molecules to Aβ(12–28). Journal of Biological Chemistry, 2011, 286, 41578-41588.	3.4	46
22	Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor. PLoS ONE, 2010, 5, e11101.	2.5	129
23	9,10â€Anthraquinone hinders βâ€aggregation: How does a small molecule interfere with Aβâ€peptide amyloid fibrillation?. Protein Science, 2009, 18, 792-800.	7.6	91