
Christos Constantinidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1168514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demixed principal component analysis of neural population data. ELife, 2016, 5, .	6.0	397
2	The neuroscience of working memory capacity and training. Nature Reviews Neuroscience, 2016, 17, 438-449.	10.2	377
3	A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nature Neuroscience, 2002, 5, 175-180.	14.8	370
4	Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neuroscience, 2014, 17, 431-439.	14.8	352
5	Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1368-1373.	7.1	348
6	Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 394-399.	7.1	289
7	Bottom-Up and Top-Down Attention. Neuroscientist, 2014, 20, 509-521.	3.5	283
8	Correlated Discharges Among Putative Pyramidal Neurons and Interneurons in the Primate Prefrontal Cortex. Journal of Neurophysiology, 2002, 88, 3487-3497.	1.8	269
9	The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neuroscience, 2001, 4, 311-316.	14.8	247
10	Temporally Irregular Mnemonic Persistent Activity in Prefrontal Neurons of Monkeys During a Delayed Response Task. Journal of Neurophysiology, 2003, 90, 3441-3454.	1.8	235
11	Persistent Spiking Activity Underlies Working Memory. Journal of Neuroscience, 2018, 38, 7020-7028.	3.6	229
12	Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. Journal of Neurophysiology, 1996, 76, 1352-1355.	1.8	224
13	Coding Specificity in Cortical Microcircuits: A Multiple-Electrode Analysis of Primate Prefrontal Cortex. Journal of Neuroscience, 2001, 21, 3646-3655.	3.6	224
14	Role of Prefrontal Persistent Activity in Working Memory. Frontiers in Systems Neuroscience, 2015, 9, 181.	2.5	178
15	A Neural Circuit Basis for Spatial Working Memory. Neuroscientist, 2004, 10, 553-565.	3.5	166
16	The primate working memory networks. Cognitive, Affective and Behavioral Neuroscience, 2004, 4, 444-465.	2.0	160
17	Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 2020, 23, 1016-1024.	14.8	154
18	Neuronal Responses in Area 7a to Multiple-stimulus Displays: I. Neurons Encode the Location of the Salient Stimulus. Cerebral Cortex. 2001, 11, 581-591.	2.9	126

#	Article	IF	CITATIONS
19	Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli. Journal of Neuroscience, 2005, 25, 233-238.	3.6	119
20	Stimulus Selectivity in Dorsal and Ventral Prefrontal Cortex after Training in Working Memory Tasks. Journal of Neuroscience, 2011, 31, 6266-6276.	3.6	111
21	Semantic confusion regarding the development of multisensory integration: a practical solution. European Journal of Neuroscience, 2010, 31, 1713-1720.	2.6	107
22	Early involvement of prefrontal cortex in visual bottom-up attention. Nature Neuroscience, 2012, 15, 1160-1166.	14.8	107
23	Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. Journal of Neurophysiology, 1994, 72, 1020-1023.	1.8	104
24	Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4651-4656.	7.1	95
25	Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Frontiers in Integrative Neuroscience, 2012, 6, 17.	2.1	73
26	Changes in Prefrontal Neuronal Activity after Learning to Perform a Spatial Working Memory Task. Cerebral Cortex, 2011, 21, 2722-2732.	2.9	72
27	Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 2010, 4, 12.	2.5	67
28	Neural Substrates of Inhibitory Control Maturation in Adolescence. Trends in Neurosciences, 2019, 42, 604-616.	8.6	65
29	Neural correlates of learning and working memory in the primate posterior parietal cortex. Neurobiology of Learning and Memory, 2009, 91, 129-138.	1.9	60
30	A software solution for the control of visual behavioral experimentation. Journal of Neuroscience Methods, 2005, 142, 27-34.	2.5	58
31	Variability of Prefrontal Neuronal Discharges before and after Training in a Working Memory Task. PLoS ONE, 2012, 7, e41053.	2.5	56
32	Intermittent Stimulation of the Nucleus Basalis of Meynert Improves Working Memory in Adult Monkeys. Current Biology, 2017, 27, 2640-2646.e4.	3.9	51
33	Cholinergic modulation of working memory activity in primate prefrontal cortex. Journal of Neurophysiology, 2011, 106, 2180-2188.	1.8	47
34	Functional specialization of areas along the anterior–posterior axis of the primate prefrontal cortex. Cerebral Cortex, 2017, 27, 3683-3697.	2.9	46
35	Persistent Discharges in the Prefrontal Cortex of Monkeys Naive to Working Memory Tasks. Cerebral Cortex, 2007, 17, i70-i76.	2.9	44
36	Neural changes after training to perform cognitive tasks. Behavioural Brain Research, 2013, 241, 235-243.	2.2	43

CHRISTOS CONSTANTINIDIS

#	Article	IF	CITATIONS
37	Correlated discharges in the primate prefrontal cortex before and after working memory training. European Journal of Neuroscience, 2012, 36, 3538-3548.	2.6	41
38	Representation of remembered stimuli and task information in the monkey dorsolateral prefrontal and posterior parietal cortex. Journal of Neurophysiology, 2015, 113, 44-57.	1.8	36
39	Neural correlates of working memory development in adolescent primates. Nature Communications, 2016, 7, 13423.	12.8	35
40	Anterior-posterior gradient of plasticity in primate prefrontal cortex. Nature Communications, 2018, 9, 3790.	12.8	35
41	Neurons with inverted tuning during the delay periods of working memory tasks in the dorsal prefrontal and posterior parietal cortex. Journal of Neurophysiology, 2012, 108, 31-38.	1.8	34
42	Posterior Parietal Mechanisms of Visual Attention. Reviews in the Neurosciences, 2006, 17, 415-27.	2.9	33
43	Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7095-7100.	7.1	33
44	An evolutionary gap in primate default mode network organization. Cell Reports, 2022, 39, 110669.	6.4	33
45	Age-dependent changes in prefrontal intrinsic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3853-3858.	7.1	32
46	Neural Correlates of a Decision Variable Before Learning to Perform a Match/Non-Match Task. Journal of Neuroscience, 2012, 32, 6161-6169.	3.6	31
47	Differences in Intrinsic Functional Organization Between Dorsolateral Prefrontal and Posterior Parietal Cortex. Cerebral Cortex, 2014, 24, 2334-2349.	2.9	30
48	Working memory performance and neural activity in prefrontal cortex of peripubertal monkeys. Journal of Neurophysiology, 2013, 110, 2648-2660.	1.8	29
49	Synchronous oscillations and phase reorganization in the basal ganglia during akinesia induced by highâ€dose haloperidol. European Journal of Neuroscience, 2007, 26, 1912-1924.	2.6	28
50	Temporal Properties of Posterior Parietal Neuron Discharges During Working Memory and Passive Viewing. Journal of Neurophysiology, 2007, 97, 2254-2266.	1.8	26
51	Representation of Spatial and Feature Information in the Monkey Dorsal and Ventral Prefrontal Cortex. Frontiers in Integrative Neuroscience, 2018, 12, 31.	2.1	25
52	Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition. Cell Reports, 2016, 14, 2765-2773.	6.4	23
53	Effects of task and coordinate frame of attention in area 7a of the primate posterior parietal cortex. Journal of Vision, 2011, 10, 12-12.	0.3	22
54	Intermittent stimulation in the nucleus basalis of meynert improves sustained attention in rhesus monkeys. Neuropharmacology, 2018, 137, 202-210.	4.1	22

#	Article	IF	CITATIONS
55	Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex, 2018, 28, 3816-3828.	2.9	21
56	Plasticity of Persistent Activity and Its Constraints. Frontiers in Neural Circuits, 2020, 14, 15.	2.8	21
57	Cognitive functions of the posterior parietal cortex. Frontiers in Integrative Neuroscience, 2013, 7, 35.	2.1	19
58	Behavioral response inhibition and maturation of goal representation in prefrontal cortex after puberty. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3353-3358.	7.1	19
59	Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex. Journal of Neurophysiology, 2015, 114, 2194-2203.	1.8	16
60	Prefrontal cortical plasticity during learning of cognitive tasks. Nature Communications, 2022, 13, 90.	12.8	14
61	Emergence of Non-Linear Mixed Selectivity in Prefrontal Cortex after Training. Journal of Neuroscience, 2021, 41, JN-RM-2814-20.	3.6	13
62	Time Course of Functional Connectivity in Primate Dorsolateral Prefrontal and Posterior Parietal Cortex during Working Memory. PLoS ONE, 2013, 8, e81601.	2.5	12
63	Potential for intermittent stimulation of nucleus basalis of Meynert to impact treatment of alzheimer's disease. Communicative and Integrative Biology, 2017, 10, e1389359.	1.4	12
64	Nucleus basalis stimulation enhances working memory by stabilizing stimulus representations in primate prefrontal cortical activity. Cell Reports, 2021, 36, 109469.	6.4	12
65	Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks. European Journal of Neuroscience, 2014, 40, 2910-2921.	2.6	11
66	Working Memory: From Neural Activity to the Sentient Mind. , 2021, 11, 2547-2587.		11
67	MEG source imaging detects optogenetically-induced activity in cortical and subcortical networks. Nature Communications, 2021, 12, 5259.	12.8	9
68	Task-specific modulation of PFC activity for matching-rule governed decision-making. Brain Structure and Function, 2021, 226, 443-455.	2.3	8
69	Drifts in Prefrontal and Parietal Neuronal Activity Influence Working Memory Judgments. Cerebral Cortex, 2021, 31, 3650-3664.	2.9	8
70	Cholinergic Deep Brain Stimulation for Memory and Cognitive Disorders. Journal of Alzheimer's Disease, 2021, 83, 491-503.	2.6	8
71	Trial-to-Trial Variability of Spiking Delay Activity in Prefrontal Cortex Constrains Burst-Coding Models of Working Memory. Journal of Neuroscience, 2021, 41, 8928-8945.	3.6	8
72	Strong Gamma Frequency Oscillations in the Adolescent Prefrontal Cortex. Journal of Neuroscience, 2022, 42, 2917-2929.	3.6	8

#	Article	IF	CITATIONS
73	More Prominent Nonlinear Mixed Selectivity in the Dorsolateral Prefrontal than Posterior Parietal Cortex. ENeuro, 2022, 9, ENEURO.0517-21.2022.	1.9	8
74	Lateralization of Executive Function: Working Memory Advantage for Same Hemifield Stimuli in the Monkey. Frontiers in Neuroscience, 2017, 11, 532.	2.8	7
75	Neural Mechanisms of Working Memory Accuracy Revealed by Recurrent Neural Networks. Frontiers in Systems Neuroscience, 2022, 16, 760864.	2.5	6
76	Multilevel atlas comparisons reveal divergent evolution of the primate brain. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
77	Emergence of prefrontal neuron maturation properties by training recurrent neural networks in cognitive tasks. IScience, 2021, 24, 103178.	4.1	5
78	A Code for Cross-Modal Working Memory. Neuron, 2016, 89, 3-5.	8.1	4
79	Fixation target representation in prefrontal cortex during the antisaccade task. Journal of Neurophysiology, 2017, 117, 2152-2162.	1.8	3
80	Rhythmicity of Prefrontal Local Field Potentials after Nucleus Basalis Stimulation. ENeuro, 2022, 9, ENEURO.0380-21.2022.	1.9	2
81	An Evolutionary Gap in Primate Default Mode Network Organization. SSRN Electronic Journal, 0, , .	0.4	1
82	Protocol for behavioral and neural recording during stimulation of the macaque monkey nucleus basalis. STAR Protocols, 2022, 3, 101136.	1.2	1
83	Neurophysiological Mechanisms of Working Memory. , 2015, , 171-186.		0
84	Emergence of Prefrontal Neuron Maturation Properties by Training Recurrent Neural Networks in Cognitive Tasks. SSRN Electronic Journal, 0, , .	0.4	0
85	Prefrontal gamma power and LFP tuning in working memory decrease during monkey adolescent development. Journal of Vision, 2021, 21, 2795.	0.3	0
86	Working Memory and Prefrontal Neural Activity of Macaques in Early Adolescence. Journal of Vision, 2021, 21, 2913.	0.3	0
87	Plasticity of prefrontal cortical responses during learning in a working memory task. Journal of Vision, 2016, 16, 704.	0.3	0
88	Intermittent Stimulation of the Nucleus Basalis of Meynert Improves Working Memory in Adult Monkeys. SSRN Electronic Journal, 0, , .	0.4	0
89	Neuronal activity in Prefrontal and Posterior Parietal Cortex Mediating Working Memory Judgments. Journal of Vision, 2019, 19, 246b.	0.3	0
90	Alterations of Intrinsic Prefrontal Circuitry in Adolescence and Through Deep-Brain Stimulation in a Nonhuman Primate Model. Biological Psychiatry, 2022, 91, S15.	1.3	0